Al super-resolution-based models for turbulence and combustion Mathis Bode^{a,b} (m.bode@fz-juelich.de)

^aFakultät für Maschinenwesen, RWTH Aachen University, Aachen, Germany

^bIJülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, Jülich, Germany

- Fighting climate change requires many new/optimized technologies. E.g.:
 - more efficient engines
 - more efficient turbines
 - hydrogen as fuel
 - o ammonia as fuel
- This is only efficiently possible with predictive simulations supporting the development and design process
- Data-driven subfilter models for LES

Predictive Large-Eddy Simulations (LESs)

- Use high-fidelity direct numerical simulation (DNS) data to train data-driven subfilter models for complex LES
- Examples include simple turbulence data but also more complex
 - data, such as breakup data used to model the fuel injection
- Fig. 1: Visualization of breakup DNS data (left) and complex engine LES (right). The highlyresolved DNS data can be used to train a datadriven subfilter model, which is then used to accurately model fuel injection in the LES.

Phys.-Informed Enhanced Super-Resolution GAN (PIESRGAN)

Closing Algorithm

- Filtered/LES equations contain unclosed ^{1.} terms (red) which need to be modeled _{2.} $(\Phi)_t + \mathbf{u} \cdot \nabla(\Phi) = D\nabla^2(\Phi) + \dot{\omega}_{\Phi}$
- $\rightarrow \left(\widetilde{\Phi}\right)_t + \boldsymbol{u} \cdot \nabla \left(\widetilde{\Phi}\right) = D \nabla^2 \left(\widetilde{\Phi}\right) \boldsymbol{u}'' \cdot \nabla \left(\Phi''\right) + \widetilde{\dot{\omega}_{\Phi}}$
- Closure is done on reconstructed data fields which are generated by deep learning network called PIESRGAN
- 1. Use the PIESRGAN to reconstruct $\Phi_{\rm R}^n$ from $\Phi_{\rm LES}^n$.
- 2. Use $\Phi_{\rm R}^n$ to update the primary species fields of Φ to $\Phi_{\rm R}^{n; {\rm update}}$ by evaluating the source terms and solving the unfiltered scalar equations on the mesh of $\Phi_{\rm R}^n$.
- 3. Use $\Phi_{\rm R}^{n;{\rm update}}$ to estimate the unclosed terms $\Psi_{\rm LES}^{n}$ in the LES equations of Φ by evaluating the local terms with $\Phi_{\rm R}^{n;{\rm update}}$ and applying a filter operator.
- 4. Use Ψ_{LES}^n and Φ_{LES}^n to advance the LES equations of Φ to Φ_{LES}^{n+1} .
- Alg. 1: AI super-resolution closing algorithm.

Fig. 3: Demonstration of PIESRGAN-subfilter accuracy in a posteriori tests of multiple complex flows.

Achievements & Conclusions

Generality
Efficiency
Robustness
Accuracy

- PIESRGAN was developed and applied to multiple complex flows
- PIESRGAN-LESs result in predictive simulations with higher accuracy than classical LES for lower computational cost on state-of-the-art supercomputers
- As example, cycle-to-cycle variation in engine flame kernels were computed with PIESRGAN-LES as simulations were cheaper than DNS
- Training convergence is still the main challenge and subject to

current work

References (selection)

- Bode et al., Using physics-informed enhanced super-resolution generative adversarial networks for subfilter modeling in turbulent reactive flows, PROCI, 2021
- Bode et al., Applying Physics-Informed Enhanced Super-Resolution Generative Adversarial Networks to Turbulent Premixed Combustion and Engine-like Flame Kernel Direct Numerical Simulation Data, PROCI, 2022
- Bode, Applying Physics-Informed Enhanced Super-Resolution Generative Adversarial Networks to Finite-Rate-Chemistry Flows and Predicting Lean Premixed Gas Turbine Combustors, CNF (submitted)
- Bode, Applying Physics-Informed Enhanced Super-Resolution Generative Adversarial Networks to Turbulent Non-Premixed Combustion on Non-Uniform Meshes and Demonstration of an Accelerated Simulation Workflow, CNF (submitted)

Acknowledgements

- Center of Excellence "Center of Excellence in Combustion"
- Computing time projects: TurbulenceSL & JHPC55

Jülich, September 29th – 30th, 2022 NIC Symposium

