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Motivation
Reducing noise generated by landing gears during take-off and approach is
one of the major challenges in modern aircraft design requiring new disrup-
tive noise mitigation concepts. Recently, the installation of porous trailing
edges at wings showed favorable noise mitigation properties. In the present
study, different upstream installed porous fairings are accessed by numer-
ical means. Objective is to understand their mode of noise mitigation to
draw conclusions on effective usage of porous fairings.

Numerical method and implementation
Cumulant lattice Boltzmann method
The Boltzmann equation (eq. (1)) describes the evolution in time t of
the momentum distribution function f(x, v, t). This function represents
the density of particles at the position x and time t with a velocity v.
Discretization yields the lattice Boltzmann equation (eq. (2)).

∂f

∂t
+ v · ∇f = Ω(f) (1)

fi(x+ ci∆t, t+ ∆t) = f∗i (x, t) = fi(x, t) + Ωi(f) (2)

The collision operator Ω accounts for the effect of momentum exchange of
particles colliding with each other. It relaxes the distribution towards a
Maxwell equilibrium distribution function. Here, the collision is performed
in a cumulant space (eq. (4)). Therefore, f is transformed into countable
cumulants c (eq. (3)) [1].

c
αβγ

:= c−α−β−γ
∂α∂β∂γ

∂Ξαi ∂Ξβj ∂Ξγk
ln(F (Ξ))

∣∣∣∣
Ξ=0

(3)

c∗αβγ = cαβγ + ωαβγ [ceqαβγ − cαβγ ] (4)

Acceleration using GPUs
With the cumulant LB method a well parallizable numerical scheme for
high Reynolds number flow is obtained. The implementation follows a
hardware-agnostic approach for homogeneous and heterogeneous many-
core platforms. It is based on MPI and higher-level parallelism features
introduced by the C++17 Standard, which are realized in the NVIDIA
HPC SDK. A strong scaling is shown in Fig. 1.
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Figure 1: Strong scaling on JUWELS Booster for a LB-CFD simulation in
three space dimensions accelerated by NVIDIA A100 GPUs.

Workflow
periodic sample

(DNS)

• cumulant LBM
• periodic domain: 2 units
• Resolving solid matrix

per
iodi

c

pe
ri
od

ic

infl
ow

out
flow

periodic sample
(model)

• cumulant LBM
• periodic domain: 2 units
• Modeling pressure drop

per
iodi

c

pe
ri
od

ic

infl
ow

out
flow

por
ous

mode
l

Calibration
sample
(B2A)

• ONERA
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Verification
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Validation
Landing gear
(A-Tunnel)

• TUD
• Open-circuit wind tunnel

• 250x250 mm2

• pressure drop, stereo
PIV, microphones
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DNS of flow through a porous material
A flow through a periodic section of the diamond lattice structure is fully
resolved at different bulk velocities to
characterize the properties of the
material. The obtained data
is used to calibrate a porous
model applied in the landing gear
simulation with installed fairing.

Figure 2: Flow field through the
diamond lattice structure.
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Figure 3: Pressure drop over time
of different grids with increasing
resolutions.

Landing gear with upstream installed fairing
A simplified two-wheel nose landing gear model with a 1:7 real scale is
investigated at a freestream Mach number M∞ = 0.1 and a wheel based
Reynolds number of ReD = 346, 306 [2]. The noise mitigation properties
of different kind of porous fairings are subject of this study.

Figure 4: Velocity magnitude on isosurfaces of Q-Criterion for the baseline
(left) and baseline with a fairing (right) landing gear configuration.
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Figure 5: Temporal evolution of
the aerodynamic drag force act-
ing on the baseline and the base-
line with fairing configuration.
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Figure 6: Sound pressure level
generated by the baseline and the
baseline with fairing configura-
tion calculated at a flyover posi-
tion in a distance of nine wheel
diameters.
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