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Per- and Polyfluorinated carbon substances
Extremely versatile but …
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Per- and Polyfluorinated carbon substances
Extremely versatile but …
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Per- and Polyfluorinated carbon substances
Extremely versatile but often harmful to the environment and health 
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Per- and Polyfluorinated carbon substances
What is so special? Some basics

• F: The most electronegative element

• F: Low Polarizability → small dispersion forces

• C-F: Highly polar bond

• C-F: The strongest single bond of organic chemistry
→ „Forever Chemicals“
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◼ |qF| > |qH|

◼ mF > mH

◼ rF > rH

◼ dCF > dCH

◼ kCF > kCH
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Why are perfluorinated carbons non-wettable and slippery?
What is the role of the C-F bond?
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?

Mass → Frequencies?

F

C

F

C

H

C

H
C

Pauli repulsion → Corrugation?
Wang et al. Surface Science 2013
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Why are perfluorinated carbons hydrophobic and polar?
The origin of polar hydrophobicity
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Polar Hydrophobicity – An atomistic investigation
Diamond C(111) as model surface

◼ How does an increasing fluorination change the wettability?
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Adsorption of a single water molecule
A surprising result from DFT calculations (PBE + Grimme’s D2 correction)
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Why partial fluorination increases wettability
It is all about the range of the surface electric field
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Why the electric field of polar perfluorinated surfaces is confined
It is classical electrostatics
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From DFT to classical MD
From adsorption energies to contact angles
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Electric Field

Parametrization of classical OPLS force field with
point charges fitted to DFT electrostatics

(50H/50F)

Contact angle directly correlated with
water adsorption energy

Mayrhofer, Moras, Mulakaluri, Rajagopalan, Stevens, Moseler, J. Am. Chem. Soc. 138, 4018 (2016)

Fluorine-Terminated Diamond Surfaces as Dense Dipole Lattices : The Electrostatic Origin of Polar Hydrophybicity
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Why are perfluorinated carbons non-wettable and slippery?
What is the role of the C-F bond?
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𝐸H−bond ≈ 0.2 𝑒𝑉
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Pauli repulsion → atom size?
Wang et al. Surface Science 2013
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Non-reactive simulations of H/F-terminated carbon surfaces
Optimized Potential for Liquid Simulations (OPLS)
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• Diamond/DLC structure

• Elastic constants

• C-H and C-F lengths

• C-H and C-F bending and stretching

𝐸 = 𝐸bonded + 𝐸nonbonded = Ebonds + Eangles + ECoulomb + ELennard−Jones

• Electrostatic field produced by the surface

• Contact potential energy surface CPES

(Pauli repulsion, vdW interactions)

Jorgensen et al. J. Am. Chem. Soc. (1996)

𝜎𝑖𝑗 = 𝜎𝑖𝜎𝑗

𝜀𝑖𝑗 = 𝜀𝑖𝜀𝑗
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Non-reactive simulations of H/F-terminated carbon surfaces
Validating the force field: potential energy landscapes for diamond C(111) surfaces
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Non-reactive MD simulations
Measuring shear stress
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~ 120.000 atoms; 𝑃𝑁 = 5 GPa; 𝑇 = 300 𝐾; 𝑣 = 10 𝑚/𝑠

MD: The system is thermalized before sliding. No thermostat while measuring friction. T is stable

Slope = τ

Fixed

Rigid v

100 F

100 H
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Non-reactive NEB simulations
CPES corrugation under a normal load of 5 GPa versus shear stress
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What determines the smoothness of the CPES corrugation?
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Non-reactive MD simulations
Disentangling vibrational, electrostatic and steric effects
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Non-reactive MD simulations
Disentangling vibrational, electrostatic and steric effects
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Non-reactive MD simulations
Disentangling vibrational, electrostatic and steric effects
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Non-reactive MD simulations
Disentangling vibrational, electrostatic and steric effects
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Non-reactive MD simulations
Disentangling vibrational, electrostatic and steric effects
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Non-reactive MD simulations
Disentangling vibrational, electrostatic and steric effects

23

100H/0F vs. 0H/100F

100F100H

σH

σF



© MicroTribology Center μTC

Non-reactive MD simulations
Disentangling vibrational, electrostatic and steric effects
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Non-reactive MD simulations
Disentangling vibrational, electrostatic and steric effects

Commensurate mixed
H/F-terminated diamond

contacts

H/F-terminated ta-C 
contacts

Incommensurate H/F-
terminated diamond

contacts

Reichenbach, Mayrhofer, Kuwahara, Moseler, Moras, ACS Appl. Mater. Interfaces 12, 8805-8816 (2020)

Steric Effects Control Dry Friction of H- and F-Terminated Carbon Surfaces
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CONCLUSIONS
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𝛿+ 𝛿−
High density of C-F dipoles
(Polar Hydrophobicity)

Large size of F atom
(Geometrically smooth 
surfaces)

C2H6C2F6
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THANK YOU FOR YOUR ATTENTION!
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