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strong correlations: what are they?



the many-electron problem
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why is it a problem?



simple interactions among many particles 
lead to surprising co-operative behavior

Nobel Prize in Physics 1977

More Is Different

The reductionist hypothesis may still 
lbe a topic for controversy among phi- 
losophers, but among the great majority 
of active scientists I think it is accepted 
without question The workings of our 
minds and bodles, and of all the ani- 
mate or lnanimate matter of which we 
have any detailed knowledges are as 
sumed to be controlled by the same set 
o£ fundamental laws which except 
under certain extreme conditions we 
feel we know pretty well. 

It seems inevitable to go on unerit- 
ically to what appears at first sight to 
be- an obvious corollary of reduction 
ism: that if everything obeys the same 
fundamental laws, then the only sci 
entists who are studying anything really 
fundamental are those who are working 
on those laws. In practice, that amounts 
to some astrophysicists, some elemen- 
tary particle physicists, some logicians 
and other mathematicians, and few 
others. This point of view, which it is 
the main purpose of this article to 
oppose, is expressed in a rather well- 
known passage by Weisskopf (1): 

Looking at the development of science 
in thP Twentieth' Century one can dis 
tinguish two trends, which I will call 
sSintensive and "extensive" research, lack- 
ing a better 'terminology. In short: in- 
tensive research goes for the fundamental 
laws, extensive research goes for the ex- 

The author is a member of the technlical staff 
of the Bell Telephone Laboratories, Murray Hill, 
New Je1 sey 07974, and visiting professor of 
theoretical physics at Cavendish Laboratory, 
Cambridge, England. This article is an expanded 
version of a Regents' Lecture given in 1967 at 
the University of California, La Jolla. 
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less relevance they seem to have to the 
very real problems of the rest of sci- 
ence, much less to those of society. 

The constructionist hypothesis breaks 
down when confronted with the twin 
difficulties of scale and complexity. The 
behavior of large and complex aggre- 
gates of elementary particles, it turns 
out, is not to be understood in terms 
of a simple extrapolation of the prop- 
erties of a few particles. Instead, at 
each level of complexity entirely new 
properties appear, and the understand- 
ing of the new behaviors requires re- 
search which I think is as fundamental 
in its nature as any other. That is, it 
seems to me that one may array the 
sciences roughly linearly in a hierarchy, 
according to the idea The elementary 
entities of science X obey the laws of 
science Y 

planatlon - of phenomena ;n terms of 
lnown fundamental laws. As always, dis- 
tinotions of this kind are not unambiguous, 
but they are clear in most cases. Solid 
state physics, plasma physics, and perhaps 
also biology are extensivee High energy 
physics and a good part of nuclear physics 
are intensive. There is always much less 
intensive research going on than extensive. 
Once new fundamental laws are discov- 
ereds a large and ever increasing activity 
begins in order to apply the discoveries to 
hitherto unexplained phenomena. Thus, 
there are two dimensions to basic re- 
search The frontier of science extends all 
along a long line from the newest and most 
modern intenslve research5 over the ex- 
tensive research recently spawned by the 
intensive research of yesterday, to the 
broad and well developed web of exten- 
sive research activities based on mtensive 
research of past decades. 

The effectiveness of this message may 
be indicated by the fact that I heard it 
quoted recently by a leader in the field 
of materials science, who urged the 
participants at a meeting dedicated to 
"fundamental problems in condensed 
matter physics" to accept that there 
were few or no such problems and that 
nothing was left but extensive scienceS 
which he seemed to equate with device 

. @ 

englneerlng. 
The main fallacy in this kind of 

thinking is that the reductionist hypoth- 
esis does not by any rneans imply a 
"constructionist" one: The ability to 
reduce everything to simple fundamen- 
tal laws does not imply the ability to 
start from those laws and reconstruct 
the universe. In fact, the more the ele-- 
mentary particle physicists tell us about 
the nature of the fundamental laws the 
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But this hierarchy does not imply 
that science X is "just applied Y*" At 
each stage entirely new laws, concepts, 
and generalizations are necessary, re- 
qulring inspiration and creativity to just 
as great a degree as in the previous one. 
Psychology is not applied biology, nor 
s biology applied chemistry. 

In my own field of many-body physB 
ics, we are, perhaps, closer to our fun 
damental, intensive underpinnings than 
in any other science in which non- 
trivial complexities occur, and as a re- 
sult we have begun to formulate a 
general theory of just how this shift 
from quantitative to qualitative differ- 
entiation takes place. This formulation, 
called the theory of "broken sym- 
metry," may be of help in making more 
generally clear the breakdown of the 
constructionist converse of reduction- 
ism. I will give an elementary and in 
complete explanation of these ideas, and 
then go on to some more general spec- 
ulative comments about analogies at 
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More Is Different 

Broken symmetry and the nature of 
the hierarchical structure of science 

P. W. Anderson 



co-operative phenomena

sand dunes traffic jamflocking

(photos from wikipedia)

human brain



in solid-state systems

superconductivity

 high-Tc superconductivity

non-conventional superconductivity

magnetismorbital order
photo from wikipedia

Mott transition
G. Kotliar and D. Vollhardt, Physics Today 57, 53 (2004)

BSCCO-2223, photo from wikipedia

E. Pavarini, E. Koch, A.I. Lichtenstein, PRL 101, 266405 (2008)  

G. Zhang and E. Pavarini,  
Rapid Research Letters 12, 1800211 (2018) 



bad news: the exact solution is not an option

Ĥe ↵(r1, r2, . . . , rN ) = E↵ ↵(r1, r2, . . . , rN )
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neutral iron, N=26

The tabulation of one variable requires a page, of two variables a volume, and of 
three variables a library; but the full specification of a single wavefunction of neutral 
Fe is a function of seventy eight variables. It would be rather crude to restrict to ten 
the number of values at which to tabulate this function, but even so, full tabulation of 
it would require 1078 entries, and even if this number could be reduced somewhat 
from considerations of symmetry, there would still not be enough atoms in the whole 
solar system to provide the material for printing such a table. 
D.R. Hartree (1948) 

 (r1, r2, . . . , rN)

bad news: the exact solution is not an option



good news: it would be anyway useless

On the other hand, the exact solution of a many-body 
problem is really irrelevant since it includes a large 
mass of information about the system which although 
measurable in principle is never measured in practice.   
[..] An incomplete description of the system is 
considered to be sufficient if these measurable 
quantities and their behavior are described correctly.  

H.J. Lipkin

E. Pavarini and E. Koch, Autumn School on Correlated Electron 2013, Introduction
(photo from wikipedia)



why questions

(photo from wikipedia)



what can be done then ?

Ĥe ↵(r1, r2, . . . , rN ) = E↵ ↵(r1, r2, . . . , rN )
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This paper deals with the ground state of an interacting electron gas in an external potential v(r). It is
proved that there exists a universal functional of the density, Ft I(r) g, independent of v(r), such that the ex-
pression E—=fs(r)n (r)dr+Ft I(r)j has as its minimum value the correct ground-state energy associated with
s(r). The functional FLn(r)j is then discussed for two situations: (1) n(r) @san(r), 8/ao((1, and
(2) a(r) = q (r/ra) with p arbitrary and 1'p ~~.In both cases F can be expressed entirely in terms of the cor-
relation energy and linear and higher order electronic polarizabilities of a uniform electron gas. This approach
also sheds some light on generalized Thomas-Fermi methods and their limitations. Some new extensions of
these methods are presented.

INTRODUCTION
' '

&~IJRING the last decade there has been considerable
progress in understanding the properties of a

homogeneous interacting electron gas. ' The point of
view has been, in general, to regard the electrons as
similar to a collection of noninteracting particles
with the important additional concept of collective
excitations.

On the other hand, there has been in existence since
the 7920's a different approach, represented by the
Thomas-Fermi method' and its re6nements, in which
the electronic density n(r) plays a central role and in
which the system of electrons is pictured more like a
classical liquid. This approach has been useful, up to
now, for simple though crude descriptions of inhomo-
geneous systems like atoms and impurities in nietals.

Lately there have been also some important advances
along this second line of approach, such as the work of
Kompaneets and Pavlovskii, ' Kirzhnits, ' Lewis, ' Baraff
and Borowitz, ' Bara6, ' and DuBois and Kivelson. ' The
present paper represents a contribution in the same area.

In Part I, we develop an exact formal variational
principle for the ground-state energy, in which the den-
sity tz(r) is the variable function. Into this principle
enters a universal functional PLtr(r)), which applies to
all electronic systems in their ground state no matter
what the external potential is. The main objective of

* Supported in part by the U. S. Once of Naval Research.
f NATO Post Doctoral Fellow.
f Guggenheim Fellow.' For a review see, for example, D. Pines, Elementary E'.'xci tati ons

in Solids (W. A. Benjamin Inc. , New York, 1963).' For a review of work up to 1956, see N. H. March, Advan.
Phys. 6, 1 (1957).

A. S. Kompaneets and E. S. Pavlovskii, Zh. Eksperim. i.
Teor. Fiz. 51, 427 (1956) [English transl. : Soviet Phys. —JETP
4, 328 (1957)j.

D. A. Kirzhnits, Zh. Eksperim. i. Teor. Fiz. 32, 115 (1957)
I English transl. : Soviet Phys. —JETP 5, 64 (1957)j.' H. W. Lewis, Phys. Rev. 111, 1554 (1958).' G. A. 13araff and S. Borowitz, Phys. Rev. 121, 1704 (1961).

7 G. A. BaraG, Phys. Rev. 123, 2087 (1961).'D. F. Du Bois and M. G. Kivelson, Phys. Rev. 127, 1182
(1962).

theoretical considerations is a description of this
functional. Once known, it is relatively easy to deter-
mine the ground-state energy in a given external
potential.

In Part II, we obtain an expression for FLnj when tr
deviates only slightly from uniformity, i.e., n(r)=1'cp
+ts(r), with ts/tss —& 0; In this case FLej is entirely
expressible in terms of the exact ground-state energy
and the exact electronic polarizability n(g) of a uniform
electron gas. This procedure will describe correctly
the long-range Friedel charge oscillations' set up by
a localized perturbation. All previous refinements of the
Thomas-Fermi method have failed to include these.

In Part III we consider the case of a slowly varying,
but +of necessarily almost constant density, tr (r)= p(r/rs), rs —&oo. For this case we derive an expansion
of F)trj in successive orders of rs ' or, equivalently of
the gradient operator V acting on e(r). The expansion
coeKcients are again expressible in terms of the exact
ground-state energy and the exact linear, quadratic,
etc. , electric response functions of a uniform electron
gas to an external potential w(r). In this way we recover,
quite simply, all previously developed refinements of
the Thomas-Fermi method and are able to carry them
somewhat further. Comparison of this case with the
nearly uniform one, discussed in Part II, ,also reveals
why the gradient expansion is intrinsically incapable
of properly describing the Friedel oscillations or the
radial oscillations of the electronic density in an atom
which reQect the electronic shell structure. A partial
summation of the gradient expansion can be carried
out (Sec. III.4), but its usefulness has not yet been
tested.

I. EXACT GENERAL FORMULATION

I. The Density as Basic Variable
Ke shall be considering a collection of an arbitrary

number of electrons, enclosed in a large box and moving

' J. Friedel, Phil. Nag. 45, 155 (1952).

a way out: density-functional theory
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Self-Consistent Equations Including Exchange and Correlation Effects*
W. KOHN AND L. J. SHAM

Unieersity of Ca/Bfornia, San Diego, la Jolta, California
(Received 21 June 1965l

From a theory of Hohenberg and Kohn, approximation methods for treating an inhomogeneous system
of interacting electrons are developed. These methods are exact for systems of slowly varying or high density.
For the ground state, they lead to self-consistent equations analogous to the Hartree and Hartree-Fock
equations, respectively. In these equations the exchange and correlation portions of the chemical potential
of a uniform electron gas appear as additional effective potentials. (The exchange portion of our effective
potential differs from that due to Slater by a factor of -';.) Electronic systems at finite temperatures and in
magnetic lelds are also treated by similar methods. An appendix deals with a further correction for
systems with short-wavelength density oscillations.

I. INTRODUCTION
'N recent years a great deal of attention has been

- - given to the problem of a homogeneous gas of inter-
acting electrons and its properties have been established
with a considerable degree of confidence over a wide
range of densities. Of course, such a homogeneous gas
represents only a mathematical model, since in all real
systeins (atoms, inolecules, solids, etc.) the electronic
density is nonuniform.

It is then a matter of interest to see how properties
of the homogeneous gas can be utilized in theoretical
studies of inhomogeneous systems. The well-known
methods of Thomas-Fermi' and the Slater' exchange
hole are in this spirit. In the present paper we use the
formalism of Hohenberg and Kohn' to carry this
approach further and we obtain a set of self-consistent
equations which include, in an approximate way, ex-
change and correlation effects. They' require only a
knowledge of the true chemical potential, tie(e), of a
homogeneous interacting electron gas as a function of
the density n.

We derive two alternative sets of equations
[Eqs. (2.8) and (2.22)) which are analogous, respec-
tively, to the conventional Hartree and Hartree-Fock.
equations, and, although they also include correlation
effects, they are no more difficult to solve.

The local effective potentials in these equations are
unique in a sense which is described in Sec. II. In par-
ticular, we And that the Slater exchange-hole potential,
besides its omission of correlation effects, is too large
by a factor of —,'.

Apart from work. on the correlation energy of the
homogeneous electron gas, most theoretical many-body
studies have been concerned with elementary excita-
tions and as a result there has been little recent progress
in the theory of cohesive energies, elastic constants,
etc., of real (i.e., inhomogeneous) metals and alloys.
The methods proposed here offer the hope of new
progress in this latter area.

~ Supported in part by the U. S. Ofhce of Naval Research.'L. H. Thomas, Proc. Cambridge Phil. Soc. 23, 542 (1927);E. Fermi, Z. Physik 48, 73 (1928).' J. C. Slater, Phys. Rev. 81, 385 (1951).' P. Hohenberg and W. Kohn, Phys. Rev. 136, 3864 (1964l;
referred to hereafter as HK.

In Secs. III and IV, we describe the necessary Inodid-
cations to deal with the finite-temperature properties
and with the spin paramagnetism of an inhomogeneous
electron gas.

Of course, the simple methods which are here pro-
posed in general involve errors. These are of two general
origins4: a too rapid variation of density and, for 6nite
systems, boundary effects. Refinements aimed at re-
ducing the 6rst type of error are brieQy discussed in
Appendix II.

II. THE GROUND STATE

A. Local Effective Potential
It has been shown' that the ground-state energy of an

interacting inhomogeneous electron gas in a static po-
tential n(r) can be written in the form

1 e(r)e(r')
Z= tt(r)e(r) dr+ — dr dr'+G[e),

r r'[—
i:,, (2.1)

where e(r) is the density and G[e) is a universal func-
tional of the density. This expression, furthermore, is a
minimum for the correct density function e(r). In this
section we propose first an approximation for G[e),
which leads to a scheme analogous to Hartree's method
but contains the major part of the effects of exchange
and correlation.

We first write

G[e)=T.[e)yZ, [e), (2.2)

where T,[e) is the kinetic energy of a system of non-
interacting electrons with density e(r) and F,[e) is,
by our definition, the exchange and. correlation energy
of an interacting system with density e(r). For an arbi-
trary e(r), of course, one can give no simple exact ex-
pression for E,[e). However, if e(r) is sufliciently
slowly varying, one can show' that

F,[e)= e(r)e, (e(r)) dr, (2.3)

4 W. Kohn and L. J. Sham, Phys. Rev. 137, A1697 (1965).
~ For such a system it follows from HK that the kinetic energy

is in fact a unique functional of the density.
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1998: Nobel Prize in Chemistry to Walter Kohn



the standard model: density-functional theory

Ĥe ↵(r1, r2, . . . , rN ) = E↵ ↵(r1, r2, . . . , rN )
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1998: Nobel Prize in Chemistry to Walter Kohn

(from the Nobel lecture)



the Kohn-Sham eigenvalues

Kohn-Sham auxiliary Hamiltonian
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Kohn-Sham eigenvalues as elementary excitations!

unexpected successes of DFT  
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band structures, material trends, prediction



Kohn-Sham eigenvalues as elementary excitations!

unexpected successes of DFT  

successes of the independent electron picture

Kohn-Sham auxiliary Hamiltonian

ĥe =
X

i
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mean-field-like Hamiltonian



strongly-correlated systems:  
those for which the KS approximation fails



deep problems: Mott systems
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Experiments: insulator! Above 40 K  a paramagnetic insulator 

DFT (LDA): it is a metal! 



origin of failures: one-electron picture
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Ĥe =
X

i

Ĥ
0
i +

X

i 6=i0

1

|ri � ri0 |

<latexit sha1_base64="fh/4uBwgZMsvOmtCzcb9eTqkUm8=">AAABxHicZY/NSsNAFIXv1L9a/6Iu3QRLwVVJpOhKKQjSZQXTFpoaJtPbduhMEjIToYS4Fnwat/okvo1pDKLtgQuH79wL5/qR4Epb1hepbGxube9Ud2t7+weHR8bxSU+FSczQYaEI44FPFQoeoKO5FjiIYqTSF9j353fLvP+MseJh8KgXEY4knQZ8whnVOfKMhjujOu1kHt64KpEeN2sFSV1GRc4zjz9ZmWfUraZVyFw3dmnqUKrrGa/uOGSJxEAzQZUa2lakRymNNWcCs5qbKIwom9MpDnMbUIlqlBbvZGYjJ2NzEsb5BNos6N+LlEqlFtLPNyXVM7WaLeFvlle3V4uum95l075qth5a9fZt+UQVzuAcLsCGa2hDB7rgAIM3eIcP+CT3RBBFkp/VCilvTuGfyMs3+Zp+KA==</latexit>
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Mott transition

ab-initio Kohn-Sham approximation fails…
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editorial

Capturing the essence of a phenomenon 
while being simple: the ingredients of a 
top model in physics. Since the early days 
of quantum mechanics, many models, 
Hamiltonians and theories aiming to 
provide a deeper understanding of 
various properties of condensed matter 
have been put forward — with varying 
degrees of success and fame. One 
truly legendary model is the Hubbard 
model, independently conceived by 
Martin Gutzwiller1, Junjiro Kanamori2 
and, of course, John Hubbard3 — their 
original papers all appearing in 1963. "e 
main motivation was the need for a way to 
tackle the behaviour of correlated (rather 
than non-interacting) electrons in solids. 
Initially, the model was introduced to 
provide an explanation for the itinerant 
ferromagnetism of transition metals, such 
as iron and nickel, but the past 50 years 
have seen its relevance go far beyond that 
original context.

Technically, the Hubbard model is an 
extension of the so-called tight-binding 
model, wherein electrons can hop between 
lattice sites without ‘feeling’ each other. In 
its simplest form, electron hopping can 
only take place between nearest-neighbour 
sites, and all hopping processes have the 
same kinetic energy, –t. "e tight-binding 
model evinces the quantum-mechanical 
quintessence of electrons in a solid: the 
emergence of an electronic band structure — 
intervals of allowed and forbidden 
energies — lying at the heart of present-day 
semiconductor technology.

Hubbard’s Hamiltonian features 
an additional term, introducing an 
energy amount U for each pair of 
electrons occupying the same lattice 
site — representing Coulomb repulsion. 
Hubbard found the model to be the 
simplest that produces both a metallic 
and an insulating state, depending on the 
value of U. (Incidentally, the commonly 
known ‘Hubbard U’ was actually called 
‘I’ by Hubbard, following John Slater’s 
notation used in a precursor to the model.
Philip Anderson seems to be the #rst one 
to have used ‘U’.)

Following the submission of his 1963 
paper3, Hubbard continued to improve and 

re#ne his model. His ‘Electron correlations 
in narrow energy bands’ would eventually 
comprise six installments. ‘Hubbard III’4 
became especially important as it showed 
that for one electron per lattice site — the 
Hubbard model at half #lling — the Mott (or 
Mott–Hubbard) transition is reproduced. 
"is is a type of metal–insulator transition 
that could not be understood in terms of 
conventional band theory (which predicts 
that a half-#lled band always results in a 
conducting state).

"e simplicity of the Hubbard model, 
when written down, is deceptive. Not only 
had Gutzwiller, Kanamori and Hubbard 
already extracted di$erent physics from the 
model, it turned out to be a ‘mathematically 
hard’ problem: an exact solution has so far 
only been obtained for the one-dimensional 
case. Today, with ever-increasing computer 
power, numerical simulations of the 
model are mainstream — particularly 
when trying to get a grip on the role of the 
topology of the underlying lattice, a ‘hidden 
variable’ indeed.

Ever since its inception, the model 
has spawned new lines of research in 
theoretical physics; the development 
of dynamical mean-#eld theory is a 
noteworthy example. Although the 
model quickly became a #rm favourite of 
theorists, it twice experienced a sudden 
rise in popularity due to breakthroughs in 
experimental physics.

"e #rst followed the discovery of 
high-temperature superconductors in 
1986. Until then, the Hubbard model 
was believed to have little to do with 
superconductivity. However, in the wake 
of the high-temperature superconductivity 
‘revolution’, one particular adaptation of 
Hubbard’s original model called the t–J 
model (originally arising in the context of 
doped Mott–Hubbard insulators) emerged 
as a compelling candidate for hosting a 
superconducting state. A rigorous proof 
of the existence (or non-existence) of a 
superconducting ground state in the t–J 
model is still missing — underlining that 
research on superconductivity and the 
Hubbard model is continuing.

A second boost in activity surrounding 
the Hubbard model came in the 2000s, 

when the #eld of cold-atom optical trapping 
had advanced so far that experimental 
realizations of the Hubbard model could 
be achieved. A landmark experiment 
demonstrated how a lattice of bosonic 
atoms displays a transition from a super%uid 
to a Mott insulator5, a result accounted 
for by the Bose–Hubbard model (the 
Hubbard model for bosons). Many other 
variants of the Hubbard model, including 
the original model for fermions6, have 
been experimentally realized by now, a 
development that nicely illustrates how a 
model can become the target of experiments 
itself — and, more generally, how theoretical 
and experimental physics can entangle and 
spark further progress.

Part of the legacy of Hubbard’s model 
is that it launched the #eld of strongly 
correlated systems — it is undoubtedly the 
archetypal model of many-body physics. 
(As an aside, when asked by his mother-
in-law what the book he was reading — 
!e Many-Body Problem — was about, 
John Hubbard replied, without even the 
faintest attempt at a serious explanation: “A 
murder mystery.”)

Although the Hubbard model secured 
it’s place in (condensed-matter) physics 
textbooks many decades ago, it is very likely 
that it will continue to play an important 
role in fundamental research as well. In 
particular, the continuing experimental 
progress in arti#cial lattices of cold 
atoms and superconductivity, where the 
Hubbard model and its modi#cations play 
a prominent role, should be a stimulus for 
further explorations. ❐
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Hubbard model at half-filling
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1989-1992: dynamical mean-field theory
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local self-energy approximation

map LATTICE problem to QUANTUM IMPURITY problem



k-independent self-energy

Metzner and Vollhardt, PRL 62, 324 (1989); Georges and Kotliar, PRB 45, 6479 (1992). 
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quantum-impurity model
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dynamical mean-field theory

G. Kotliar and D. Vollhardt, Physics Today 57, 53 (2004)
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DMFT for real materials
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in theory, more indices
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Quantum Impurity Solver

Build Quantum Impurity Model



in practice, QMC-based QI solvers

limited number of orbitals/site
finite temperature

some interactions are worse than others
some bases are worse than others

we need minimal material-specific models 

computational time

sign problem



minimal material-specific models

chose the one-electron basis in a smart way — minimal models
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idea: DFT-based Wannier functions

• span full Hamiltonian 
• good electron density 
• very good description of weakly correlated states 
• average and long-range Coulomb included 
• information on lattice and chemistry 
• allow energy- and symmetry-based downfolding

E. Pavarini et al., PRL 87, 047003 (2001); PRL 92, 176403 (2004); New J. Phys. 7, 188 (2005)   
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Figure 5. Basis functions of the truly minimal set of O 2p NMTOs calculated
for LaTiO3 with the structure of [12]. Shown are the orbital shapes (constant-
amplitude surfaces) with the ± signs labelled by red and blue. O1 is in a flat
face of the distorted La cube and the O2s are in the buckled faces (see caption
to figure 2). In column 1 we show the orbitals perpendicular to the faces (pz)
which exhibit symmetric Ti-O-Ti σ-bonds. In column 2 we show the orbitals in
the top horizontal face (O1 px and py). Although they are equivalent to those in
the bottom face shown in column 3, we show both for the sake of clarity. The
O1 px and py orbitals, as well as those for O2 shown in the following figure 6,
exhibit weak, symmetric Ti-O-Ti π-bonds. Most importantly, however, the O1 px

and py orbitals show asymmetric O-La σ-bonds. The latter, together with the O2
px-La σ-bonds shown in figure 6, are responsible for the GdFeO3-type distortion.
This O-A bonding is shown schematically in figure 7.

respectively 17% (15%) and 11% (8%) of the average of the four O1-La distances, and it shortens
the O2 bond by 16% (14%) of the average of the four O2-La distances [12]. Here the numbers in
parentheses are from the older data [44]. For CaVO3 the corresponding bond-length reductions
are 10% and 4% for O1 and 12% for O2, while forYTiO3, they are as large as 28% and 23% for O1,
and 22% for O2. For YTiO3 the shortest O-Y distance is, in fact, only 10% longer than the O-Ti
distance.

New Journal of Physics 7 (2005) 188 (http://www.njp.org/)

and (sufficiently) general QI solvers

Mott Transition and Suppression of Orbital Fluctuations in Orthorhombic 3d1 Perovskites
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Using t2g Wannier functions, a low-energy Hamiltonian is derived for orthorhombic 3d1 transition-
metal oxides. Electronic correlations are treated with a new implementation of dynamical mean-field
theory for noncubic systems. Good agreement with photoemission data is obtained. The interplay of
correlation effects and cation covalency (GdFeO3-type distortions) is found to suppress orbital fluctua-
tions in LaTiO3 and even more in YTiO3, and to favor the transition to the insulating state.

DOI: 10.1103/PhysRevLett.92.176403 PACS numbers: 71.30.+h, 71.15.Ap, 71.27.+a

Transition-metal perovskites have attracted much in-
terest because of their unusual electronic and magnetic
properties arising from narrow 3d bands and strong Cou-
lomb correlations [1]. The 3d1 perovskites are particularly
interesting, since seemingly similar materials have very
different electronic properties: SrVO3 and CaVO3 are
correlated metals with mass enhancements of, respec-
tively, 2.7 and 3.6 [2], while LaTiO3 and YTiO3 are Mott
insulators with gaps of, respectively, 0.2 and 1 eV [3].

In the Mott-Hubbard picture the metal-insulator tran-
sition occurs when the ratio of the on-site Coulomb re-
pulsion to the one-electron bandwidth exceeds a critical
value Uc=W, which increases with orbital degeneracy
[4,5]. In the ABO3 perovskites the transition-metal ions
(B) are on a nearly cubic (orthorhombic) lattice and at the
centers of corner-sharing O6 octahedra. The 3d band
splits into pd!-coupled t2g bands and pd"-coupled eg
bands, of which the former lie lower, have less O character
and couple less to the octahedra than the latter. The
simplest theories for the d1 perovskites [1] are therefore
based on a Hubbard model with three degenerate, 16 -filled
t2g bands per B ion, and the variation of the electronic
properties along the series is ascribed to a progressive
reduction of W due to the increased bending of the pd!
hopping paths (BOB bonds).

This may not be the full explanation of the Mott
transition however, because a splitting of the t2g levels
can effectively lower the degeneracy. In the correlated
metal, the relevant energy scale is the reduced bandwidth
associated with quasiparticle excitations. Close to the
transition, this scale is of order !ZW, with Z! 1"
U=Uc , and hence much smaller than the original band-
width W. A level splitting by merely ZW is sufficient to
lower the effective degeneracy all the way from a three-
fold to a nondegenerate single band [6]. This makes the
insulating state more favorable by reducing Uc=W [5,6].
Unlike the eg-band perovskites, such as LaMnO3, where
large (10%) cooperative Jahn-Teller (JT) distortions of
the octahedra indicate that the orbitals are spatially or-
dered, in the t2g-band perovskites the octahedra are al-

most perfect. The t2g orbitals have therefore often been
assumed to be degenerate. If that is true, it is conceivable
that quantum fluctuations lead to an orbital liquid [7]
rather than orbital ordering. An important experimental
constraint on the nature of the orbital physics is the
observation of an isotropic, small-gap spin-wave spec-
trum in both insulators [8]. This is remarkable because
LaTiO3 is a G-type antiferromagnet with TN # 140 K,
m # 0:45#B, and a 3% JT stretching along a [9], while
YTiO3 is a ferromagnet with TC # 30 K, m0 ! 0:8#B,
and a 3% stretching along y on sites 1 and 3, and x on 2
and 4 [10] (see Fig. 1).

FIG. 1 (color). Pbnm primitive cells (right panels), subcells 1
(left panels), and the occupied t2g orbitals for LaTiO3 (top
panels) and YTiO3 (bottom panels) according to the LDA$
DMFT calculation. The oxygens are violet, the octahedra
yellow, and the cations orange. In the global, cubic xyz system
directed approximately along the Ti-O bonds, the orthorhombic
translations are a#%1;"1; 0&%1$ $&, b#%1; 1; 0&%1$ %&, and
c#%0; 0; 2&%1$ &&, with $, %, and & small. The Ti sites 1 to 4
are a=2, b=2, %a$ c&=2, and %b$ c&=2. The La(Y) ab plane is
a mirror %z $ "z& and so is the Ti bc plane %x $ y& when
combined with the translation %b" a&=2.
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new QMC-based QI solvers

Continuous-time Monte Carlo methods for quantum impurity models
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Quantum impurity models describe an atom or molecule embedded in a host material with which it
can exchange electrons. They are basic to nanoscience as representations of quantum dots and
molecular conductors and play an increasingly important role in the theory of ‘‘correlated electron’’
materials as auxiliary problems whose solution gives the ‘‘dynamical mean-field’’ approximation to
the self-energy and local correlation functions. These applications require a method of solution
which provides access to both high and low energy scales and is effective for wide classes of
physically realistic models. The continuous-time quantum Monte Carlo algorithms reviewed in this
article meet this challenge. Derivations and descriptions of the algorithms are presented in enough
detail to allow other workers to write their own implementations, discuss the strengths and
weaknesses of the methods, summarize the problems to which the new methods have been
successfully applied, and outline prospects for future applications.
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model includes the full dynamics of the t2g electrons,21 the
effective U0 is larger than for the two-band model. By scanning
different U0 between 7 and 5 eV we find that U0 ∼ 5.5 eV
yields a gap quite close to that of the two-band model and a
spectrum in good agreement with experiments. This shows that
in the two-band model the Coulomb integral U0 is screened
∼10% by the t2g electrons. The half-filled t2g bands exhibit a
very large gap because at half filling the t2g exchange couplings
effectively enhance the effect of the Coulomb repulsion U0.
Finally, we find the on-site spin-spin correlation function to
be 〈Stg

z S
eg

z 〉 ∼ 0.74, very close to the value of 0.75 expected
for aligned eg and St2g

= 3/2 t2g spins. Concerning the sign
problem, we find it negligible for all of these calculations (the
average sign is ∼0.99 in the worst case).

IV. ORBITAL FLUCTUATIONS AND MAGNETISM IN
CaVO3 AND YTiO3

The importance of orbital fluctuations in the physics of
3d1 perovskites has long been debated.6,15,16,28–30 Single-site
DMFT calculations have shown that in the presence of crystal-
field splitting Coulomb repulsion strongly suppresses orbital
fluctuations.6 However, these conclusions were based on a
Hubbard model with density-density Coulomb interactions
only. In this section we analyze the effect of the neglected
spin-flip and pair-hopping Coulomb interactions. Furthermore,
exploiting our efficient CT-HYB solver, we address the issue
of the nature of the low-temperature (30 K)15,31 ferromagnetic
transition in YTiO3.

A. Orbital fluctuations

The minimal model to consider for 3d1 transition-metal
oxides is a three-band Hubbard model for the t2g bands
including spin-flip and pair-hopping terms, and with

εmσm′σ ′ = εmm′δσ,σ ′ ,

t ii
′

mσm′σ ′ = t ii
′

mm′δσ,σ ′ ,

where m,m′ = xy,xz,yz. For the Coulomb parameters we use
U0 = 5 eV and Jt2g

∼ 0.68 eV (CaVO3) or Jt2g
= 0.64 eV

(YTiO3) from theoretical estimates and previous works.6,27

Because the local Hamiltonian mixes flavors even in the
crystal-field basis, i.e., the basis diagonalizing the nonin-
teracting part of the local Hamiltonian, we perform the
LDA + DMFT calculations using the Krylov version of our
general CT-HYB QMC solver.

In Table I we show the occupations ni of the natural orbitals,
i.e., the eigenstates of the one-body density matrix, at ∼190 K
in CaVO3 and YTiO3. We find that CaVO3 is a paramagnetic
metal with a small orbital polarization. Instead, YTiO3 is
a paramagnetic insulator with orbital polarization p = n1 −
(n2 + n3)/2 ∼ 1, i.e., basically full (orbitally ordered state).
For this system, the double occupancies at 290 K are small; i.e.,
we find 1

2

∑
mσ &=m′σ ′ 〈n̂mσ n̂m′σ ′ 〉 ∼ 0.015 for YTiO3. The occu-

pied orbital is |1〉 = 0.611|xy〉 − 0.056|xz〉 + 0.789|yz〉. We
find the occupied state and orbital polarization are basically the
same with full Coulomb and density-density approximations.
Previous calculations6 in which spin-flip and pair-hopping
terms have been neglected and T ∼ 770 K are in line with these
results. This shows that spin-flip and pair-hopping terms do

TABLE I. Occupations ni of the natural orbitals (with ni > ni+1)
at T = 190 K in CaVO3 and YTiO3 obtained by diagonalizing the
occupation matrix. For YTiO3 the occupied orbital is the natural
orbital |1〉 = 0.611|xy〉 − 0.056|xz〉 + 0.789|yz〉, and it basically
coincides with the lowest-energy crystal-field state; we find about
the same occupied orbital by performing the calculation with and
without pair-hopping and spin-flip terms, or in the paramagnetic and
in the ferromagnetic phase.

n1 n2 n3

CaVO3 0.47 0.28 0.25
YTiO3 0.98 0.01 0.01

not change the conclusion that orbital fluctuations are strongly
suppressed in the Mott insulator YTiO3. In the CT-HYB QMC
simulations the average sign is ∼0.9 for YTiO3 and ∼0.95 for
CaVO3.

B. Ferromagnetism in YTiO3

YTiO3 is one of the few ferromagnetic Mott insulators.
Neutron scattering experiments pointed out early-on the diffi-
culties in reconciling ferromagnetism and the expected orbital
order,15 and there have been suggestions that the ferromagnetic
state could rather be associated with a quadrupolar order
and large-scale orbital fluctuations.29 However, second-order
perturbation theory calculations indicate that ferromagnetism
and orbital order could be reconciled, provided that the real
crystal structure of YTiO3, including the GdFeO3-type dis-
tortion (tilting and rotation of the octahedra, and deformation
of the cation cage), is taken into account.16 To clarify this
point, we check the instability towards ferromagnetism of the
three-band t2g Hubbard model obtained for the experimental
structure of YTiO3. With this approach we calculate the
ferromagnetic transition temperature TC due to superexchange
alone in the orbitally ordered phase. Since experimentally
TC ∼ 30 K, we have to perform LDA + DMFT calculations
down to very low temperatures, which becomes possible with
the CT-HYB QMC solver. On lowering the temperature, we
find that the sign problem becomes sizable (average sign ∼0.7
at 40 K). However, we can basically eliminate it (average
sign ∼0.97) by performing the LDA + DMFT calculations
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FIG. 3. Ferromagnetic spin polarization as a function of temper-
ature in YTiO3. The plot shows a transition at the critical temperature
TC ∼ 50 K, slightly overestimating the experimental value TC ∼
30 K, as one might expect from a mean-field calculations.
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model includes the full dynamics of the t2g electrons,21 the
effective U0 is larger than for the two-band model. By scanning
different U0 between 7 and 5 eV we find that U0 ∼ 5.5 eV
yields a gap quite close to that of the two-band model and a
spectrum in good agreement with experiments. This shows that
in the two-band model the Coulomb integral U0 is screened
∼10% by the t2g electrons. The half-filled t2g bands exhibit a
very large gap because at half filling the t2g exchange couplings
effectively enhance the effect of the Coulomb repulsion U0.
Finally, we find the on-site spin-spin correlation function to
be 〈Stg

z S
eg

z 〉 ∼ 0.74, very close to the value of 0.75 expected
for aligned eg and St2g

= 3/2 t2g spins. Concerning the sign
problem, we find it negligible for all of these calculations (the
average sign is ∼0.99 in the worst case).

IV. ORBITAL FLUCTUATIONS AND MAGNETISM IN
CaVO3 AND YTiO3

The importance of orbital fluctuations in the physics of
3d1 perovskites has long been debated.6,15,16,28–30 Single-site
DMFT calculations have shown that in the presence of crystal-
field splitting Coulomb repulsion strongly suppresses orbital
fluctuations.6 However, these conclusions were based on a
Hubbard model with density-density Coulomb interactions
only. In this section we analyze the effect of the neglected
spin-flip and pair-hopping Coulomb interactions. Furthermore,
exploiting our efficient CT-HYB solver, we address the issue
of the nature of the low-temperature (30 K)15,31 ferromagnetic
transition in YTiO3.

A. Orbital fluctuations

The minimal model to consider for 3d1 transition-metal
oxides is a three-band Hubbard model for the t2g bands
including spin-flip and pair-hopping terms, and with

εmσm′σ ′ = εmm′δσ,σ ′ ,

t ii
′

mσm′σ ′ = t ii
′

mm′δσ,σ ′ ,

where m,m′ = xy,xz,yz. For the Coulomb parameters we use
U0 = 5 eV and Jt2g

∼ 0.68 eV (CaVO3) or Jt2g
= 0.64 eV

(YTiO3) from theoretical estimates and previous works.6,27

Because the local Hamiltonian mixes flavors even in the
crystal-field basis, i.e., the basis diagonalizing the nonin-
teracting part of the local Hamiltonian, we perform the
LDA + DMFT calculations using the Krylov version of our
general CT-HYB QMC solver.

In Table I we show the occupations ni of the natural orbitals,
i.e., the eigenstates of the one-body density matrix, at ∼190 K
in CaVO3 and YTiO3. We find that CaVO3 is a paramagnetic
metal with a small orbital polarization. Instead, YTiO3 is
a paramagnetic insulator with orbital polarization p = n1 −
(n2 + n3)/2 ∼ 1, i.e., basically full (orbitally ordered state).
For this system, the double occupancies at 290 K are small; i.e.,
we find 1

2

∑
mσ &=m′σ ′ 〈n̂mσ n̂m′σ ′ 〉 ∼ 0.015 for YTiO3. The occu-

pied orbital is |1〉 = 0.611|xy〉 − 0.056|xz〉 + 0.789|yz〉. We
find the occupied state and orbital polarization are basically the
same with full Coulomb and density-density approximations.
Previous calculations6 in which spin-flip and pair-hopping
terms have been neglected and T ∼ 770 K are in line with these
results. This shows that spin-flip and pair-hopping terms do

TABLE I. Occupations ni of the natural orbitals (with ni > ni+1)
at T = 190 K in CaVO3 and YTiO3 obtained by diagonalizing the
occupation matrix. For YTiO3 the occupied orbital is the natural
orbital |1〉 = 0.611|xy〉 − 0.056|xz〉 + 0.789|yz〉, and it basically
coincides with the lowest-energy crystal-field state; we find about
the same occupied orbital by performing the calculation with and
without pair-hopping and spin-flip terms, or in the paramagnetic and
in the ferromagnetic phase.

n1 n2 n3

CaVO3 0.47 0.28 0.25
YTiO3 0.98 0.01 0.01

not change the conclusion that orbital fluctuations are strongly
suppressed in the Mott insulator YTiO3. In the CT-HYB QMC
simulations the average sign is ∼0.9 for YTiO3 and ∼0.95 for
CaVO3.

B. Ferromagnetism in YTiO3

YTiO3 is one of the few ferromagnetic Mott insulators.
Neutron scattering experiments pointed out early-on the diffi-
culties in reconciling ferromagnetism and the expected orbital
order,15 and there have been suggestions that the ferromagnetic
state could rather be associated with a quadrupolar order
and large-scale orbital fluctuations.29 However, second-order
perturbation theory calculations indicate that ferromagnetism
and orbital order could be reconciled, provided that the real
crystal structure of YTiO3, including the GdFeO3-type dis-
tortion (tilting and rotation of the octahedra, and deformation
of the cation cage), is taken into account.16 To clarify this
point, we check the instability towards ferromagnetism of the
three-band t2g Hubbard model obtained for the experimental
structure of YTiO3. With this approach we calculate the
ferromagnetic transition temperature TC due to superexchange
alone in the orbitally ordered phase. Since experimentally
TC ∼ 30 K, we have to perform LDA + DMFT calculations
down to very low temperatures, which becomes possible with
the CT-HYB QMC solver. On lowering the temperature, we
find that the sign problem becomes sizable (average sign ∼0.7
at 40 K). However, we can basically eliminate it (average
sign ∼0.97) by performing the LDA + DMFT calculations
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FIG. 3. Ferromagnetic spin polarization as a function of temper-
ature in YTiO3. The plot shows a transition at the critical temperature
TC ∼ 50 K, slightly overestimating the experimental value TC ∼
30 K, as one might expect from a mean-field calculations.
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model includes the full dynamics of the t2g electrons,21 the
effective U0 is larger than for the two-band model. By scanning
different U0 between 7 and 5 eV we find that U0 ∼ 5.5 eV
yields a gap quite close to that of the two-band model and a
spectrum in good agreement with experiments. This shows that
in the two-band model the Coulomb integral U0 is screened
∼10% by the t2g electrons. The half-filled t2g bands exhibit a
very large gap because at half filling the t2g exchange couplings
effectively enhance the effect of the Coulomb repulsion U0.
Finally, we find the on-site spin-spin correlation function to
be 〈Stg

z S
eg

z 〉 ∼ 0.74, very close to the value of 0.75 expected
for aligned eg and St2g

= 3/2 t2g spins. Concerning the sign
problem, we find it negligible for all of these calculations (the
average sign is ∼0.99 in the worst case).

IV. ORBITAL FLUCTUATIONS AND MAGNETISM IN
CaVO3 AND YTiO3

The importance of orbital fluctuations in the physics of
3d1 perovskites has long been debated.6,15,16,28–30 Single-site
DMFT calculations have shown that in the presence of crystal-
field splitting Coulomb repulsion strongly suppresses orbital
fluctuations.6 However, these conclusions were based on a
Hubbard model with density-density Coulomb interactions
only. In this section we analyze the effect of the neglected
spin-flip and pair-hopping Coulomb interactions. Furthermore,
exploiting our efficient CT-HYB solver, we address the issue
of the nature of the low-temperature (30 K)15,31 ferromagnetic
transition in YTiO3.

A. Orbital fluctuations

The minimal model to consider for 3d1 transition-metal
oxides is a three-band Hubbard model for the t2g bands
including spin-flip and pair-hopping terms, and with

εmσm′σ ′ = εmm′δσ,σ ′ ,

t ii
′

mσm′σ ′ = t ii
′

mm′δσ,σ ′ ,

where m,m′ = xy,xz,yz. For the Coulomb parameters we use
U0 = 5 eV and Jt2g

∼ 0.68 eV (CaVO3) or Jt2g
= 0.64 eV

(YTiO3) from theoretical estimates and previous works.6,27

Because the local Hamiltonian mixes flavors even in the
crystal-field basis, i.e., the basis diagonalizing the nonin-
teracting part of the local Hamiltonian, we perform the
LDA + DMFT calculations using the Krylov version of our
general CT-HYB QMC solver.

In Table I we show the occupations ni of the natural orbitals,
i.e., the eigenstates of the one-body density matrix, at ∼190 K
in CaVO3 and YTiO3. We find that CaVO3 is a paramagnetic
metal with a small orbital polarization. Instead, YTiO3 is
a paramagnetic insulator with orbital polarization p = n1 −
(n2 + n3)/2 ∼ 1, i.e., basically full (orbitally ordered state).
For this system, the double occupancies at 290 K are small; i.e.,
we find 1

2

∑
mσ &=m′σ ′ 〈n̂mσ n̂m′σ ′ 〉 ∼ 0.015 for YTiO3. The occu-

pied orbital is |1〉 = 0.611|xy〉 − 0.056|xz〉 + 0.789|yz〉. We
find the occupied state and orbital polarization are basically the
same with full Coulomb and density-density approximations.
Previous calculations6 in which spin-flip and pair-hopping
terms have been neglected and T ∼ 770 K are in line with these
results. This shows that spin-flip and pair-hopping terms do

TABLE I. Occupations ni of the natural orbitals (with ni > ni+1)
at T = 190 K in CaVO3 and YTiO3 obtained by diagonalizing the
occupation matrix. For YTiO3 the occupied orbital is the natural
orbital |1〉 = 0.611|xy〉 − 0.056|xz〉 + 0.789|yz〉, and it basically
coincides with the lowest-energy crystal-field state; we find about
the same occupied orbital by performing the calculation with and
without pair-hopping and spin-flip terms, or in the paramagnetic and
in the ferromagnetic phase.

n1 n2 n3

CaVO3 0.47 0.28 0.25
YTiO3 0.98 0.01 0.01

not change the conclusion that orbital fluctuations are strongly
suppressed in the Mott insulator YTiO3. In the CT-HYB QMC
simulations the average sign is ∼0.9 for YTiO3 and ∼0.95 for
CaVO3.

B. Ferromagnetism in YTiO3

YTiO3 is one of the few ferromagnetic Mott insulators.
Neutron scattering experiments pointed out early-on the diffi-
culties in reconciling ferromagnetism and the expected orbital
order,15 and there have been suggestions that the ferromagnetic
state could rather be associated with a quadrupolar order
and large-scale orbital fluctuations.29 However, second-order
perturbation theory calculations indicate that ferromagnetism
and orbital order could be reconciled, provided that the real
crystal structure of YTiO3, including the GdFeO3-type dis-
tortion (tilting and rotation of the octahedra, and deformation
of the cation cage), is taken into account.16 To clarify this
point, we check the instability towards ferromagnetism of the
three-band t2g Hubbard model obtained for the experimental
structure of YTiO3. With this approach we calculate the
ferromagnetic transition temperature TC due to superexchange
alone in the orbitally ordered phase. Since experimentally
TC ∼ 30 K, we have to perform LDA + DMFT calculations
down to very low temperatures, which becomes possible with
the CT-HYB QMC solver. On lowering the temperature, we
find that the sign problem becomes sizable (average sign ∼0.7
at 40 K). However, we can basically eliminate it (average
sign ∼0.97) by performing the LDA + DMFT calculations
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ature in YTiO3. The plot shows a transition at the critical temperature
TC ∼ 50 K, slightly overestimating the experimental value TC ∼
30 K, as one might expect from a mean-field calculations.
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FIG. 6. VOMoO4: Static magnetic susceptibility χ (q; 0)/χA(0)
in the qx,qy plane for representative values of qz, T ∼ 380 K (T "
TN ) and U = 5 eV; χA(0) ∼ µ2

eff/kBT is the atomic susceptibility
in the local spin (large βU ) limit. For each value of qz, the top
panel shows the result without vertex correction and the bottom panel
that with vertex correction. The special points in the qx,qy plane are
#1 = (2π,0), X = (π,0), and M = (π,π ).

approximately given by the expression obtained by replacing
in the Green functions in Eq. (3) the self-energy with its atomic
limit, with U renormalized by a factor r0,

%(iωn) ∼ r2
0 U 2

4
1

iωn

.

The factor r0 can be obtained by fitting the actual self-energy.
After performing analytically the Matsubara sums, we find, in
the large βU limit (for more details see the Appendix)

χ0(q; 0) ∼ µ2
eff

U

[
1 − 1

2U

(
Jr0 (0) + 1

2
Jr0 (q)

)]
, (5)

where

Jr0 (q) = (χ0(q; 0))−1 − (χ0(0))−1 = JSPT(q)/2r2
0 ,

and µeff = gµB

√
S(S + 1)/3, where S is the effective local

spin (for fully localized moments, S = 1/2). In this expression
JSPT(q) is the magnetic coupling obtained via many-body
second-order perturbation theory, accounting, however, not
only for J1 and J2 but also for long range exchange couplings.

It is given by

JSPT(q) ∼ 4J1 cos
qx

2
cos

qy

2

[

1 + 2
J1z

J1
cos qz +

(
J1z

J1

)2
]1/2

+ 2J2(cos qx + cos qy)

+ 2Jz cos qz + 4J2z(cos qx + cos qy) cos qz + · · · ,

(6)

where Ji ∼ 4t2
i /U . For VOMoO4 we find that the renor-

malization factor r0 ∼ 1. The expression Eq. (5) shows that
χ0(q; 0) does not exhibit the Curie-Weiss temperature behavior
associated with a local-moment system, and the effective
magnetic exchange coupling extracted from χ0(q; 0) is about
a factor 2 smaller than in second-order perturbation theory.
The DMFT vertex correction has several effects. First, via
the Bethe-Salpeter equation it enhances the susceptibility in
a slightly nonuniform way. Then, it yields a high-temperature
Curie-Weiss-like behavior, so that χ (q; 0) ∼ µ2

eff/(T − Tq),
where Tq is a generalized Curie-Weiss temperature. It follows
from this that we can define the magnetic coupling as J (q) =
−Tq/µ

2
eff . In first approximation we find J (q) ∼ Jr (q) and the

value of the renormalization factor is reduced from r0 ∼ 1
to r ∼ 0.7. Thus our results show that for VOMoO4, in
first approximation, Jr (q) ∼ JSPT(q). Furthermore, we find
that the local susceptibility is close to the atomic magnetic
susceptibility, and the effective static local vertex #(0) is
approximately given by

#(0) ∼ 1
µ2

eff

[
U

(
1 + 1

2U
Jr (0)

)
− kBT

]
.

Remarkably, in the large temperature limit the r factor can
be estimated expanding the Bethe-Salpeter equation (in the
matrix form) around the atomic limit

χ (q; 0) ∼ χA(0) − r2
0

r2
χA(0) Jr0 (q) χA(0),

where

r2
0

r2
∼ 1

β2

∑

nn′

[χA(0)Jr0 (q)χA(0)]n,n′

χA(0)Jr0 (q)χA(0)
(7)

and
[
Jr0 (q)

]
n,n

= [(χ0(q; 0))−1 − (χ0(0))−1]n,n.

The analytic expression of the atomic susceptibility matrix
is given for completeness in the Appendix. This yields for
VOMoO4 a renormalization factor r ∼ 0.7, close to the actual
value obtained from fitting the DMFT data.

The susceptibility of Li2VOSiO4 is shown in Fig. 7. The
conclusions are similar as for VOMoO4; the susceptibility
jumps from about zero without vertex correction to about 1
(in units of the atomic susceptibility) with vertex correction.
The renormalization parameters are slightly larger than in
VOMoO4, r0 ∼ 1.1 and r ∼ 0.84. For both Li2VOSiO4 and
VOMoO4 we find that at q = qX ≡ (0,π,π/2) the magnetic
susceptibility χ (qX; 0) ∼ χA(0) ∼ µ2

eff/kBT , indicating that
J (qX) is basically zero.
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FIG. 3: (Color online) Orbital polarization p (left) and (right)
occupied state |θ〉 (| − θ〉) for sites 1 and 3 (2 and 4) as a
function of temperature. Solid line: 300 K (R11) and 800 K
(R800K

2.4 ) structures. Dots: orthorhombic structures with half
(R6) or no (R0) Jahn-Teller distortion. Pentagons: 2 (full)
and 4 ( empty) sites CDMFT. Dashes: ideal cubic structure
(I0). Circles: U = 5 eV. Diamonds: U = 5.5 eV. Triangles:
U = 6 eV. Squares: U = 7 eV. Crystal-field splitting (meV):
840 (R11), 495 (R6), 219 (R0), 168 (R800K

2.4 ), and 0 (I0).

to the randomly oriented t2g spins. These spectra are
in line with experiments [31–34]. We find that even at
1150 K the system is fully orbitally polarized (p ∼ 1).
On sites 1 and 3, the occupied state is |θ〉 ∼ |106o〉,
on sites 2 and 4 it is | − θ〉 ∼ | − 106o〉 (d-type OO);
|θ〉 is close to the lower crystal-field state obtained from
LDA (table I) and in excellent agreement with neutron
diffraction experiments [8]. We find that things hardly
change when the JT distortion is halved (R6 structure in
Fig. 3). Even for the average 800 K structure (R800K

2.4 ) OO
does not disappear: Although the Jahn-Teller distortion
is strongly reduced to δJT = 2.4%, the crystal-field split-
ting is ∼168 meV and the orbital polarization at 1150 K
is as large as p ∼ 0.65, while θ is now close to 90o. For
all these structures, orbital order is already determined
by the distortions via the crystal-field splitting.

To find the temperature TKK at which Kugel-Khomskii
super-exchange drives orbital-order we consider the zero
crystal-field limit, i.e. the ideal cubic structure, I0. The
eg band-width increases to Weg

∼ 3.7 eV and for U =
5 eV the system is a Mott insulator with a tiny gap only
below T ∼ 650 K. We find TKK ∼ 650 K, very close
to the metal-insulator transition (Fig. 3). To check how
strongly TKK changes when the gap opens, we increase
U . For U = 5.5 eV we find an insulating solution with
a small gap of ∼ 0.5 eV and TKK still close to ∼ 650 K.
For U = 6 eV, Eg ∼ 0.9 eV and TKK ∼ 550 K. Even with
an unrealistically large U = 7 eV, giving Eg ∼ 1.8 eV,
TKK is still as large as ∼ 470 K. Thus, despite the small
gap, TKK decreases as ∼ 1/U , as expected for super-
exchange. For a realistic U ∼ 5 eV, the calculated TKK ∼
650 K is surprisingly close to the order-disorder transition
temperature, TOO ∼ 750 K, though still much smaller

than TJT ! 1150 K. The occupied state at site 1 is |θ〉 ∼
|90o〉 for all U .

Such a large TKK is all the more surprising when com-
pared with the value obtained for KCuF3, TKK ∼ 350 K
[21]. For the ideal cubic structure the hopping matrix
(table I) is ti,i±z

m,m′ ∼ −tδm,m′δm,3z2−1, ti,i±x
m,m = ti,i±y

m,m ∼
−t/4(1 + 2δm,x2−y2), and for m $= m′ ti,i±x

m,m′ = −ti,i±y

m,m′ ∼√
3t/4. Since the effective (after averaging over the di-

rections of St2g
) hopping integral in LaMnO3, 2t/3 ∼

345 meV is ∼ 10% smaller than t ∼ 376 meV in KCuF3

[21], one may expect a slightly smaller TKK in LaMnO3,
opposite to what we find. Our result can, however, be
understood in super-exchange theory. The KK SE part of
the Hamiltonian, obtained by second-order perturbation
theory in t from Eq. (1), may be written as

Hi,i′

SE ∼
JSE

2

∑

〈ii′〉x,y

[

3T x
i T x

i′ ∓
√

3 (T z
i T x

i′ + T x
i T z

i′)
]

+
JSE

2

∑

〈ii′〉x,y

T z
i T z

i′ + 2JSE

∑

〈ii′〉z

T z
i T z

i′ , (2)

where 〈i, i′〉x,y and 〈i, i′〉z indicate near neighboring sites
along x, y, or z; −(+) refers to the x (y) direction, T x

i

and T z
i are pseudospin operators [3], with T z|3z2 − 1〉 =

1/2|3z2 − 1〉, T z|x2 − y2〉 = −1/2|x2 − y2〉. The su-
perexchange coupling is JSE = (t̄2/U)(w/2), where t̄
is the effective hopping integral. In the large U limit
(negligible J/U and h/U), w ∼ 1 + 4〈Sz

i 〉〈Sz
i′〉+ (1−

4〈Sz
i 〉〈Sz

i′〉)u
i,i′

⇑,⇓/ui,i′

⇑,⇑, where Sz
i are the eg spin operators.

In LaMnO3 the eg spins align with the randomly oriented
t2g spins, thus t̄ = 2t/3, w ∼ 2, and JSE ∼ 2(2t/3)2/U .
For d-type order, the classical ground-state is |θ〉 ∼ |90o〉,
in agreement with our DMFT results. In KCuF3, with
configuration t62ge

3
g, the Hund’s rule coupling between eg

and t2g plays no role, i.e. 〈Sz
i 〉 = 0. The hopping inte-

gral t̄ = t is indeed slightly larger than in LaMnO3, but
w ∼ 1, a reduction of 50%. Consequently, JSE is reduced
by ∼ 0.6 in KCuF3. For finite J/U and h/U , w is a more
complicated function, but the conclusions stay the same.
We verified solving (1) with LDA+DMFT that also for

LaMnO3 TKK drops drastically if ui,i′

σ,−σ = 0 and h = 0.
It remains to evaluate the effect of the orthorhombic

distortion on the transition. For this we perform calcu-
lations for the system R0 with no Jahn-Teller distortion,
but keeping the tetragonal and GdFeO3-type distortion
of the 300 K structure. This structure is metallic for
U = 4 eV; for U = 5 eV it has a gap of ∼ 0.5 eV. We
find a large polarization already at 1150 K (p ∼ 0.45).
Such polarization is due to the crystal-field splitting of
about 219 meV, with lower crystal-field states at site 1
given by |1〉 ∼ |x2 − y2〉. Surprisingly the most occupied
state |θ〉 is close to |1〉 (θ ∼ 180) only at high temper-
ature (∼ 1000 K). The orthorhombic crystal-field thus
competes with super-exchange, analogous to an external
field with a component perpendicular to an easy axis.
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FIG. 4. Convergence of the Krylov approximation |ψ(τ )〉r to
|ψ(τ )〉 = e−(Hloc−E0)τ |ψ〉 for a representative test case (five-orbital
model, half filling). The figure shows the difference #(r) =
||ψ(τ )〉r − |ψ(τ )〉|. Symbols (in order of increasing size) represent
τ = 0.005, 0.05, 0.5, 5, and 100.

window and truncate adaptively the outer bracket of the trace.
This further reduces the CPU time.

The performance of our CT-HYB QMC solver (Krylov and
segment version) on the Jülich BlueGene/Q, and comparison
with Hirsch-Fye QMC, is shown in Fig. 5.

3. Green’s function and occupation matrix

The partition function (2) can be seen as the sum over all
configurations c = {αiτi ,ᾱi τ̄i ,n} in imaginary time and flavors.
In a compact form,

Z =
∑

c

〈Z〉c =
∑

c

wc ∼
∑

{c}
sign(wc),

where in the last term the sum is over a sequence of
configurations {c} sampled by the Monte Carlo approach
using |wc| as the probability of configuration c. In the

 1
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FIG. 5. (Color online) Scaling of our CT-HYB QMC
LDA + DMFT code on BlueGene/Q. Black line: Hirsch-Fye (HF)
solver, two orbitals. The dark and light lines are CT-HYB calculations.
Dark lines: Krylov solver with truncation of the local trace (open
symbols, K-t) and without (solid symbols, K). Results are for two
(circles) and three (triangles) orbitals. Light lines: Segment solver (S),
five-band model (pentagons). All points correspond to calculations
of high quality (and with comparable error bars) for the systems
considered in this work. For β = 70 (∼165 K) the five-orbital segment
solver is about as fast the three-orbital Krylov with trace truncation or
the two-orbital Krylov without trace truncation, and it is remarkably
faster than the two-orbital HF solver.

segment solver approach, we parametrize the configurations
by intervals [0,β) (time line), occupied by a sequence of
creators and annihilators, which define segments on the time
line. The basic Monte Carlo updates are addition and removal
of segments, antisegments, or complete lines.8 In the Krylov
solver approach we use the insertion and removal of pairs
of creation and annihilation operators9,10 as basic updates.
In addition, we shift operators in time8,10 and exchange the
configurations of blocks or flavors39 (global moves). Finally,
a generic observable O can then be obtained as a Monte Carlo
average:

O ∼
∑

{c}〈O〉c sign(wc)
∑

{c} sign(wc)
,

where 〈O〉c is the value of the observable for configuration c,
and c runs over the configurations visited with probability |wc|
during the sampling. The average expansion order increases
linearly with the inverse temperature. For the case of YTiO3,
at ∼40 K, the average expansion order is n ∼ 40.

We calculate the Green’s function matrix in two ways,
directly8,12 and via Legendre polynomials.40 In the first
approach, the Green’s function matrix is obtained as a Monte
Carlo average with 〈O〉c = 〈Gαᾱ〉c, and

〈Gαᾱ〉c =
Nb∑

b=1

nb∑

i,j=1

#(τ,τbj − τ̄bi)[M (nb)]bj,biδαbj αδᾱbi ᾱ.

Here M (n) = [F (n)]−1 is the inverse of the hybridization-
function matrix, which we update at each accepted move, while
# is given by

#(τ,τ ′) = − 1
β

{
δ(τ − τ ′) τ ′ > 0,

−δ(τ − (τ ′ + β)) τ ′ < 0,

and the δ function is discretized. In the second approach, we
calculate the Legendre coefficients 〈O〉c = 〈Gl

αᾱ〉c, with

〈Gl
αᾱ〉c =

Nb∑

b=1

nb∑

i,j=1

Pl(τbj − τ̄bi)[M (nb)]bj,biδαbj αδᾱbi ᾱ,

Pl(τ ) = −
√

2l + 1
β

{
pl(x(τ )), τ > 0,
−pl(x(τ + β)), τ < 0,

where pl(x) is a Legendre polynomial of rank l, with x(τ ) =
2τ/β − 1, and we reconstruct the Green’s function matrix from

Gαᾱ(τ ) =
∞∑

l=0

√
2l + 1
β

pl(x(τ ))Gl
αᾱ.

Concerning occupations, in the segment solver we calculate
them from the total length of the segments of the different
flavors;8 in the Krylov solver we obtain them in two ways,
directly from the Green’s function and by explicitly inserting
the occupation number operator at the center of the oper-
ator sequence (τ = β/2) and calculating the corresponding
trace.9,11 The off-diagonal elements of the local occupation
matrix 〈c†αcᾱ〉, which cannot be obtained by inserting the
corresponding operators at τ = β/2,41 are extracted from the
Green’s function matrix only.

195141-7
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e��(Ĥloc�µN̂d)T ⇧1

i=k
c
d�i

(⌧i)c
†
d�̄i

(⌧̄i)
⌘
,

<latexit sha1_base64="mNOaIdklGYXhzBu2HJ0W83Z6myQ="></latexit>

order (k)  gives number of creators/annhilators

β 0

k=0

!2 !1 !2!1

k=1

!1!2 !2!1

!2 !1

k=2

!1 !2 !2

!2 !1

!1

local trace: segment solver

hybridization-expansion CT-QMC1 2



analytic expression k=11 2

β 0

k=0

!2 !1 !2!1

k=1

!1!2 !2!1

!2 !1

k=2

!1 !2 !2

!2 !1

!1

tk�,�̄(⌧ , ⌧̄ ) =

 
Y

�

sk�
�

!
e�

P
��0 (("d�µ)���0+U

2 (1���,�0 ))l�,�0

<latexit sha1_base64="Y9fdYXBdkqf1+leEv1oR87aKbVc="></latexit>

Z

Zbath
=

X

k

Z
k

d⌧

Z
k

d⌧̄
X

�,�̄

dk�̄,�(⌧ , ⌧̄ )t
k

�,�̄(⌧ , ⌧̄ )

dk�̄,�(⌧ , ⌧̄ ) = (t)2k Trbath
⇣
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FIG. 4. Convergence of the Krylov approximation |ψ(τ )〉r to
|ψ(τ )〉 = e−(Hloc−E0)τ |ψ〉 for a representative test case (five-orbital
model, half filling). The figure shows the difference #(r) =
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window and truncate adaptively the outer bracket of the trace.
This further reduces the CPU time.

The performance of our CT-HYB QMC solver (Krylov and
segment version) on the Jülich BlueGene/Q, and comparison
with Hirsch-Fye QMC, is shown in Fig. 5.

3. Green’s function and occupation matrix

The partition function (2) can be seen as the sum over all
configurations c = {αiτi ,ᾱi τ̄i ,n} in imaginary time and flavors.
In a compact form,

Z =
∑

c

〈Z〉c =
∑

c

wc ∼
∑

{c}
sign(wc),

where in the last term the sum is over a sequence of
configurations {c} sampled by the Monte Carlo approach
using |wc| as the probability of configuration c. In the
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FIG. 5. (Color online) Scaling of our CT-HYB QMC
LDA + DMFT code on BlueGene/Q. Black line: Hirsch-Fye (HF)
solver, two orbitals. The dark and light lines are CT-HYB calculations.
Dark lines: Krylov solver with truncation of the local trace (open
symbols, K-t) and without (solid symbols, K). Results are for two
(circles) and three (triangles) orbitals. Light lines: Segment solver (S),
five-band model (pentagons). All points correspond to calculations
of high quality (and with comparable error bars) for the systems
considered in this work. For β = 70 (∼165 K) the five-orbital segment
solver is about as fast the three-orbital Krylov with trace truncation or
the two-orbital Krylov without trace truncation, and it is remarkably
faster than the two-orbital HF solver.

segment solver approach, we parametrize the configurations
by intervals [0,β) (time line), occupied by a sequence of
creators and annihilators, which define segments on the time
line. The basic Monte Carlo updates are addition and removal
of segments, antisegments, or complete lines.8 In the Krylov
solver approach we use the insertion and removal of pairs
of creation and annihilation operators9,10 as basic updates.
In addition, we shift operators in time8,10 and exchange the
configurations of blocks or flavors39 (global moves). Finally,
a generic observable O can then be obtained as a Monte Carlo
average:

O ∼
∑

{c}〈O〉c sign(wc)
∑

{c} sign(wc)
,

where 〈O〉c is the value of the observable for configuration c,
and c runs over the configurations visited with probability |wc|
during the sampling. The average expansion order increases
linearly with the inverse temperature. For the case of YTiO3,
at ∼40 K, the average expansion order is n ∼ 40.

We calculate the Green’s function matrix in two ways,
directly8,12 and via Legendre polynomials.40 In the first
approach, the Green’s function matrix is obtained as a Monte
Carlo average with 〈O〉c = 〈Gαᾱ〉c, and

〈Gαᾱ〉c =
Nb∑

b=1

nb∑

i,j=1

#(τ,τbj − τ̄bi)[M (nb)]bj,biδαbj αδᾱbi ᾱ.

Here M (n) = [F (n)]−1 is the inverse of the hybridization-
function matrix, which we update at each accepted move, while
# is given by

#(τ,τ ′) = − 1
β

{
δ(τ − τ ′) τ ′ > 0,

−δ(τ − (τ ′ + β)) τ ′ < 0,

and the δ function is discretized. In the second approach, we
calculate the Legendre coefficients 〈O〉c = 〈Gl

αᾱ〉c, with

〈Gl
αᾱ〉c =

Nb∑

b=1

nb∑

i,j=1

Pl(τbj − τ̄bi)[M (nb)]bj,biδαbj αδᾱbi ᾱ,

Pl(τ ) = −
√

2l + 1
β

{
pl(x(τ )), τ > 0,
−pl(x(τ + β)), τ < 0,

where pl(x) is a Legendre polynomial of rank l, with x(τ ) =
2τ/β − 1, and we reconstruct the Green’s function matrix from

Gαᾱ(τ ) =
∞∑

l=0

√
2l + 1
β

pl(x(τ ))Gl
αᾱ.

Concerning occupations, in the segment solver we calculate
them from the total length of the segments of the different
flavors;8 in the Krylov solver we obtain them in two ways,
directly from the Green’s function and by explicitly inserting
the occupation number operator at the center of the oper-
ator sequence (τ = β/2) and calculating the corresponding
trace.9,11 The off-diagonal elements of the local occupation
matrix 〈c†αcᾱ〉, which cannot be obtained by inserting the
corresponding operators at τ = β/2,41 are extracted from the
Green’s function matrix only.
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even harder: response functions
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atomic limit, increasing U
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high-Tc superconducting cuprates (eg9)

 

Development of Ferromagnetic Fluctuations in Heavily Overdoped
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We demonstrate the presence of ferromagnetic (FM) fluctuations in the superconducting and non-
superconducting heavily overdoped regimes of high-temperature superconducting copper oxides, using
ðBi; PbÞ2Sr2CuO6þδ (Bi-2201) single crystals. Magnetization curves exhibit a tendency to be saturated in
high magnetic fields at low temperatures in the heavily overdoped crystals, which is probably a precursor
phenomenon of a FM transition at a lower temperature. Muon spin relaxation detects the enhancement
of spin fluctuations at high temperatures below 200 K. Correspondingly, the ab-plane resistivity follows a
4=3 power law in a wide temperature range, which is characteristic of metals with two-dimensional FM
fluctuations due to itinerant electrons. As the Wilson ratio evidences the enhancement of spin fluctuations
with hole doping in the heavily overdoped regime, it is concluded that two-dimensional FM fluctuations
reside in the heavily overdoped Bi-2201 cuprates, which is probably related to the decrease in the
superconducting transition temperature in the heavily overdoped cuprates.

DOI: 10.1103/PhysRevLett.121.057002

In hole-doped high-temperature superconducting cup-
rates, the relationship between the antiferromagnetism
and superconductivity has intensively been studied.
Antiferromagnetic (AF) fluctuations, by which electron
paring is believed to be mediated, have been observed in
the underdoped and optimally doped regimes [1]. In the
overdoped regime where the superconducting transition
temperature Tc is depressed with hole doping, inelastic
neutron-scattering [2] and muon spin relaxation (μSR) [3]
experiments have revealed the weakening of the low-
energy AF spin correlation with hole doping. A recent
resonant inelastic x-ray scattering experiment, on the other
hand, has revealed that high-energy AF fluctuations persist
to the nonsuperconducting heavily overdoped regime [4].
This suggests that the suppression of superconductivity in
the heavily overdoped regime might not be related to AF
fluctuations.
In the heavily overdoped regime, unlike the general

belief of the nonmagnetic Fermi-liquidlike ground state,
phenomena incompatible with a simple Fermi-liquid pic-
ture have been observed. The Curie constant has increased
with hole doping in overdoped Tl2Ba2CuO6þδ (Tl-2201)
[5], La2−xSrxCuO4 (LSCO), and La2−xBaxCuO4 [6]. The
ab-plane electrical resistivity ρab has not exhibited a T2

behavior in heavily overdoped LSCO [7]. Therefore, there
might exist other ordered states hidden adjacent to the
superconducting phase.
Kopp et al. have insisted in terms of the quantum critical

scaling theory that the non-Fermi-liquidlike temperature
dependence of the magnetic susceptibility χ in nonsuper-
conducting heavily overdoped Tl-2201 is due to the exist-
ence of a ferromagnetic (FM) phase [8]. Electronic band
calculations have suggested that the ferromagnetism appears
locally around Ba clusters in overdoped La2−xBaxCuO4 [9].
A recent theoretical calculation of the spin dynamical
structure factor by the determinant quantum Monte Carlo
method has supported the occurrence of the ferromagnetism
in the heavily overdoped regime [10]. Experimentally,
Sonier et al. have reported from zero-field μSR measure-
ments in nonsuperconducting heavily overdoped LSCO that
the relaxation rate of muon spins is enhanced with decreas-
ing temperature below 0.9 K, suggesting the development
of spin fluctuations [11]. They have also reported that ρab
exhibits a T5=3 behavior in a wide temperature range from
60 K to room temperature. The T5=3 behavior is character-
istic of metals with three-dimensional FM fluctuations due to
itinerant electrons, according to the self-consistent renorm-
alization (SCR) theory of spin fluctuations [12]. The T5=3

PHYSICAL REVIEW LETTERS 121, 057002 (2018)
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In Fig. 4, a new phase diagram of Bi-2201 is proposed
including the p dependences of RW and n. As characterized
by the increase in RW and the saturation of n around 4=3,
the region of FM fluctuations is shown in the heavily
overdoped regime. It is found that the magnetic ground
state changes from the AF to FM one with hole doping. The
FM fluctuations exist even in the superconducting heavily
overdoped regime, implying the interference between FM
fluctuations and the electron paring mediated by AF
fluctuations and resulting in the decrease in Tc with hole
doping in the heavily overdoped regime [8].
There exist two candidates for the origin of FM fluctua-

tions. One is the metallic ferromagnetism due to enhanced
spin fluctuations, the large density of states at the Fermi
level, and the good Fermi-surface nesting with the nesting
vector of q → 0. In fact, the value of RW indicates that spin
fluctuations are enhanced in the heavily overdoped regime.
It has been reported from the angle-resolved photoemission
spectroscopy [33,34] and scanning tunneling spectroscopy
[35] that the van Hove singularity resides close to the Fermi
level in heavily overdoped Bi-2201, suggesting the large
density of states at the Fermi level in the heavily overdoped
regime. A theoretical calculation based on the three-band
model has suggested that the q position where the spin
susceptibility is enhanced evolves from q ¼ ðπ; πÞ in the
parent compound toward q ¼ ð0; 0Þ with hole doping [36].
This situation is quite similar to that of Sr2−yLayRuO4 with
FM fluctuations [27]. All these are consistent with the
occurrence of the metallic ferromagnetism. The other
candidate is the double exchange interaction due to the
multiband structure. This is because Compton-scattering
measurements in LSCO [37] have suggested that holes
are doped mainly into the Cu3d3z2−r2 orbital in the
heavily overdoped regime, producing both Cu3dx2−y2
and Cu3d3z2−r2 spins and generating the FM interaction
due to the Hund coupling.

In conclusion, FM fluctuations exist in heavily over-
doped Bi-2201, suggesting the universal feature of the
hole-doped cuprates. The magnetic ground state changes
from the AF to FM one with hole doping. Moreover, the
FM fluctuations are probably related to the suppression of
superconductivity in the heavily overdoped regime. The
FM fluctuations may answer several unsolved non-Fermi-
liquidlike behaviors in the heavily overdoped regime.
For example, the broadening of nodal quasiparticle peaks
observed in the angle-resolved photoemission spectroscopy
of La1.78Sr0.22CuO4 [38] and Tl-2201 [39,40] may be
predominantly caused by the scattering of quasiparticles
by low-energy FM fluctuations [8]. The more detailed
relationship between the FM fluctuations and supercon-
ductivity in cuprates should be clarified in future.
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We demonstrate the presence of ferromagnetic (FM) fluctuations in the superconducting and non-
superconducting heavily overdoped regimes of high-temperature superconducting copper oxides, using
ðBi; PbÞ2Sr2CuO6þδ (Bi-2201) single crystals. Magnetization curves exhibit a tendency to be saturated in
high magnetic fields at low temperatures in the heavily overdoped crystals, which is probably a precursor
phenomenon of a FM transition at a lower temperature. Muon spin relaxation detects the enhancement
of spin fluctuations at high temperatures below 200 K. Correspondingly, the ab-plane resistivity follows a
4=3 power law in a wide temperature range, which is characteristic of metals with two-dimensional FM
fluctuations due to itinerant electrons. As the Wilson ratio evidences the enhancement of spin fluctuations
with hole doping in the heavily overdoped regime, it is concluded that two-dimensional FM fluctuations
reside in the heavily overdoped Bi-2201 cuprates, which is probably related to the decrease in the
superconducting transition temperature in the heavily overdoped cuprates.

DOI: 10.1103/PhysRevLett.121.057002

In hole-doped high-temperature superconducting cup-
rates, the relationship between the antiferromagnetism
and superconductivity has intensively been studied.
Antiferromagnetic (AF) fluctuations, by which electron
paring is believed to be mediated, have been observed in
the underdoped and optimally doped regimes [1]. In the
overdoped regime where the superconducting transition
temperature Tc is depressed with hole doping, inelastic
neutron-scattering [2] and muon spin relaxation (μSR) [3]
experiments have revealed the weakening of the low-
energy AF spin correlation with hole doping. A recent
resonant inelastic x-ray scattering experiment, on the other
hand, has revealed that high-energy AF fluctuations persist
to the nonsuperconducting heavily overdoped regime [4].
This suggests that the suppression of superconductivity in
the heavily overdoped regime might not be related to AF
fluctuations.
In the heavily overdoped regime, unlike the general

belief of the nonmagnetic Fermi-liquidlike ground state,
phenomena incompatible with a simple Fermi-liquid pic-
ture have been observed. The Curie constant has increased
with hole doping in overdoped Tl2Ba2CuO6þδ (Tl-2201)
[5], La2−xSrxCuO4 (LSCO), and La2−xBaxCuO4 [6]. The
ab-plane electrical resistivity ρab has not exhibited a T2

behavior in heavily overdoped LSCO [7]. Therefore, there
might exist other ordered states hidden adjacent to the
superconducting phase.
Kopp et al. have insisted in terms of the quantum critical

scaling theory that the non-Fermi-liquidlike temperature
dependence of the magnetic susceptibility χ in nonsuper-
conducting heavily overdoped Tl-2201 is due to the exist-
ence of a ferromagnetic (FM) phase [8]. Electronic band
calculations have suggested that the ferromagnetism appears
locally around Ba clusters in overdoped La2−xBaxCuO4 [9].
A recent theoretical calculation of the spin dynamical
structure factor by the determinant quantum Monte Carlo
method has supported the occurrence of the ferromagnetism
in the heavily overdoped regime [10]. Experimentally,
Sonier et al. have reported from zero-field μSR measure-
ments in nonsuperconducting heavily overdoped LSCO that
the relaxation rate of muon spins is enhanced with decreas-
ing temperature below 0.9 K, suggesting the development
of spin fluctuations [11]. They have also reported that ρab
exhibits a T5=3 behavior in a wide temperature range from
60 K to room temperature. The T5=3 behavior is character-
istic of metals with three-dimensional FM fluctuations due to
itinerant electrons, according to the self-consistent renorm-
alization (SCR) theory of spin fluctuations [12]. The T5=3
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Band-Structure Trend in Hole-Doped Cuprates and Correlation with Tc max

E. Pavarini, I. Dasgupta,* T. Saha-Dasgupta,† O. Jepsen, and O. K. Andersen
Max-Planck-Institut für Festkörperforschung, D-70506 Stuttgart, Germany
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By calculation and analysis of the bare conduction bands in a large number of hole-doped high-
temperature superconductors, we have identified the range of the intralayer hopping as the essential,
material-dependent parameter. It is controlled by the energy of the axial orbital, a hybrid between Cu 4s,
apical-oxygen 2pz , and farther orbitals. Materials with higher Tc max have larger hopping ranges and
axial orbitals more localized in the CuO2 layers.

DOI: 10.1103/PhysRevLett.87.047003 PACS numbers: 74.25.Jb, 74.62.Bf, 74.62.Fj, 74.72.–h

The mechanism of high-temperature superconductivity
(HTSC) in the hole-doped cuprates remains a puzzle [1].
Many families with CuO2 layers have been synthesized
and all exhibit a phase diagram with Tc going through a
maximum as a function of doping. The prevailing expla-
nation is that at low doping, superconductivity is destroyed
with rising temperature by the loss of phase coherence, and
at high doping by pair breaking [2]. For the materials de-
pendence of Tc at optimal doping, Tc max, the only known,
but not understood, systematics is that for materials with
multiple CuO2 layers, such as HgBa2Can21CunO2n12,
Tc max increases with the number of layers, n, until n ! 3.
There is little clue as to why for n fixed, Tc max depends
strongly on the family, e.g., why for n ! 1, Tc max is 40 K
for La2CuO4 and 85 K for Tl2Ba2CuO6, although the
Néel temperatures are fairly similar. A wealth of structural
data has been obtained, and correlations between struc-
ture and Tc have often been looked for as functions of
doping, pressure, uniaxial strain, and family. However,
the large number of structural and compositional param-
eters makes it difficult to find what besides doping con-
trols the superconductivity. Recent studies of thin epitaxial
La1.9Sr0.1CuO4 films concluded that the distance between
the charge reservoir and the CuO2 plane is the key struc-
tural parameter determining the normal state and supercon-
ducting properties [3].

Most theories of HTSC are based on a Hubbard model
with one Cu dx22y2-like orbital per CuO2 unit. The one-
electron part of this model is, in the k representation,

´"k# ! 2 2t"coskx 1 cosky# 1 4t0 coskx cosky

2 2t00"cos2kx 1 cos2ky# 1 . . . , (1)

with t, t0, t00, . . . denoting the hopping integrals "$0# on
the square lattice (Fig. 1). First, only t was taken into
account, but the consistent results of local-density approxi-
mation (LDA) band-structure calculations [4] and angle-
resolved photoemission spectroscopy (for overdoped,
stripe-free materials) [5] have led to the current usage
of including also t0, with t0$t ! 0.1 for La2CuO4
and t0$t ! 0.3 for YBa2Cu3O7 and Bi2Sr2CaCu2O8,
whereby the constant-energy contours of expression (1)
become rounded squares oriented in, respectively, the [11]

and [10] directions. It is conceivable that the materials
dependence enters the Hamiltonian primarily via its
one-electron part (1) and that this dependence is captured
by LDA calculations, but it needs to be filtered out.

The LDA band structure of the best known, and only
stoichiometric optimally doped HTSC, YBa2Cu3O7, is
more complicated than what can be described with the
t-t0 model. Nevertheless, careful analysis has shown [4]
that the low-energy layer-related features, which are the
only generic ones, can be described by a nearest-neighbor
tight-binding model with four orbitals per layer (Fig. 1),
Cu 3dx22y2, Oa 2px, Ob 2py, and Cu 4s, with the interlayer
hopping proceeding via the diffuse Cu 4s orbital whose
energy ´s is several eV above the conduction band. Also
the intralayer hoppings t0, t00, . . . , beyond nearest neighbors
in (1) proceed via Cu s. The constant-energy contours,
´i"k# ! ´, of this model could be expressed as [4]

1 2 u 2 d"´# 1 "1 1 u#p"´# !
y2

1 2 u 1 s"´# (2)

in terms of the coordinates u % 1
2 "coskx 1 cosky# and

y % 1
2 "coskx 2 cosky#, and the quadratic functions

d"´# % "´ 2 ´d# "´ 2 ´p#$"2tpd#2 and s"´# % "´s 2 ´# 3
"´ 2 ´p#$"2tsp #2, which describe the coupling of
Oa$bpx$y to, respectively, Cu dx22y2 and Cu s. The term
proportional to p"´# in (2) describes the admixture of
Oa$bpz orbitals for dimpled layers and actually extends
the four-orbital model to a six-orbital one [4]. For ´

-t’ε ε εd p s tsp tpd

t t’’
FIG. 1. Relation between the one-orbital model "t, t0, t00, . . .#
and the nearest-neighbor four-orbital model [4] (´d 2 ´p !
1 eV, tpd ! 1.5 eV, ´s 2 ´p ! 4 16 eV, tsp ! 2 eV).
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FIG. 3 (color). Left: MTO describing the Cu dx22y2 -like con-
duction band in La2CuO4. The plane is perpendicular to the
layers and passes through Cu, Oa , Oc , and La. Right: schematic
diagram giving the energy ´s of the axial orbital in terms of the
energies of its constituents and their couplings.

right-hand panel of Fig. 3: We first form the appropriate
Oc pz-like five-atom hybrid Cu d3z221-2Oc pz-2La with
the energy [7]

´c ! ´c̄ 1

√
1 1

tsc

tsp

tpz2

tcz2

!2
4r̄t2

cz2

´F 2 ´z2
2

t2
cLa

´La 2 ´F

(3)

and then couple this to the Cu s orbital to yield the axial-
orbital energy: ´s ! ´s̄ 1 2t2

sc!"´F 2 ´c#. Here, ´s̄ and
´c̄ denote the energies of the pure Cu s and Oc pz orbitals,
and tsc denotes the hopping between them. The energy of
Cu d3z221 is ´z2 and its hopping integrals to Oa!bpx!y and
Ocpz are, respectively, tpz2 and tcz2. In deriving Eqs. (2)
and (3), we have exploited that t2

pz2!t2
sp ø ´F2´z2

´s̄2´F
and that

t2
pd!t2

sp ø ´F2"´p 1´d#!2
"´p1´s#!22´F

. Although specific for La2CuO4,
Eq. (3) is easy to generalize.

In Fig. 4 we plot the r values for single-layer materials
against the distance dCu-Oc between Cu and apical oxygen.
r increases with dCu-Oc because ´s is lowered towards ´F
when the hoppings tcz2 and tsc from Oc pz to Cu d3z221
and Cu s are weakened. Since tcz2 ~ d24

Cu-Oc
and tsc ~

d22
Cu-Oc

, increasing the distance suppresses the Cu d3z221
content, which is important in La2CuO4, but negligible in
Tl2Ba2CuO6 and HgBa2CuO4. This is also reflected in
the slopes of the lines in Fig. 4 which, for each material,
give r vs dCu-Oc . The strong slope for La2CuO4 explains
the strained-film results [3], provided that r correlates with
superconductivity. That the Bi point does not fall on the
La line is an effect of Bi being different from La: Bi 6pz
couples stronger to Oc 2pz than does La 5d3z221. The fig-
ure shows that upon reaching HgBa2CuO4, r is saturated,
´s $ ´s̄, and the axial orbital is almost pure Cu 4s.

Figure 4 hints that for single-layer materials r might
correlate with the observed Tc max, but the experimental
uncertainties of both Tc max and the structural parameters
are such that we need better statistics. We therefore plot the
observed Tc max against the calculated r values for nearly

2.3 2.4 2.5 2.6 2.7 2.8 2.9
Cu−Apical Oxygen Distance

0.0

0.1
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0.3
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0.5
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~ 

t’
/t
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Tl Hg

40K

40K

85K 90K

 

FIG. 4. Calculated range parameter, r, for single-layer materi-
als vs the distance (in Å) between Cu and Oc . The lines result
from rigid displacements of Oc .

all hole-doped HTSCs in Fig. 5. For the single-layer mate-
rials we observe a strong correlation between r and Tc max,
which seems to be continued in the bonding subband for
the multilayer materials (filled squares). This indicates that
the electrons are delocalized over the multilayer [21], and
that Tc max increases with the number of layers for the
same reason that it increases among single-layer materi-
als; the multilayer is simply a means of lowering ´s fur-
ther, through the formation of Cu s-Cu s bonding states.
This is consistent with the celebrated pressure enhance-
ment [22] of Tc in HgBa2Ca2Cu3O8 and the fact [12]
that Tc max drops from 92 to 50 K when Y is replaced by
the larger cation La in YBa2Cu3O7. The r values calcu-
lated for LaBa2Cu3O7 are included in Fig. 5 and are seen
to follow the trend. That Tc max eventually drops for an
increasing number of layers is presumably caused by loss
of phase coherence.

Interlayer coupling in bct La2CuO4 mainly proceeds by
hopping from Oc pz at "0, 0, zc# to its four nearest neigh-
bors at %6 1

2 , 6 1
2 , " 1

2 2 z#c& and is therefore taken into ac-
count by adding to ´c̄ on the right-hand side of (3) the
term 28t!

cc cos 1
2kx cos 1

2 ky cos 1
2ckz . In primitive tetrago-

nal materials, the corresponding term is merely ~ cosckz
because the CuO2 layers are stacked on top of each other;
the interlayer coupling in HgBa2CuO4 proceeds from
Oc pz at "0, 0, zc# via Hg 6s!6pz at "0, 0, c!2# to Oc pz at
%0, 0, "1 2 z#c&. Coherent interlayer coupling thus makes
´s depend on kz , and this passes onto the conduction band
a kz dispersion ~ y2 cos 1

2kx cos 1
2 ky cos 1

2ckz in bct and
~ y2 cosckz in tetragonal structures. Figure 5 shows how
the kz dispersion of r decreases when the axial orbital con-
tracts to Cu 4s.

Our identification of an electronic parameter, r or ´s,
which correlates with the observed Tc max for all known
types of hole-doped HTSC materials could be a useful
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l

m

FIG. 5. Correlation between calculated r and observed Tc max.
Filled squares: single-layer materials and most bonding sub-
band for multilayers. Empty squares: most antibonding sub-
band. Half-filled squares: nonbonding subband. Dotted lines
connect subband values. Bars give kz dispersion of r in primi-
tive tetragonal materials, a m [8–20].

guide for materials synthesis and a key to understand-
ing HTSC. With current k-space renormalization-group
methods one could, for instance, investigate the effect
of the band shape on the leading correlation-driven in-
stabilities [23]. Moreover, the possibility that a longer
hopping range leads to better screening of the Coulomb
repulsion, maybe even to overscreening, could be stud-
ied. Increased diagonal hopping, t0, might lead to higher
Tc max by suppression of static stripe order [24]. The
Van Hove scenario [25] finds no support in Fig. 5 because
it is the saddlepoint of the antibonding band which is at
the LDA Fermi level in YBa2Cu3O7; the bonding band
is about half filled and enhances spin fluctuations with
q ! "p, p# [26]. The propensity to buckling is increased
by pushing the conduction band towards the Oa$b pz level
[4] by lowering of ´s, but recent structural studies [12],
as well as Fig. 5, disprove that static buckling enhances
Tc max, although dynamical buckling might. The inter-
layer pair-tunneling mechanism [27] is ruled out by the
facts that Tc max % 90 K in both bct Tl2Ba2CuO6 and
simple tetragonal HgBa2CuO4 although the additional
factor cos 1

2 kx cos 1
2ky attained by t!"k# in bct materials

strongly suppresses the pair tunneling. That the axial
orbital is the channel for coupling the layer to its surround-
ings is supported [28] by the observations that the k depen-
dence of the scattering in the normal state is y2-like [5] and
that c-axis transport is strongly suppressed by the opening
of a pseudogap with similar k dependence [29]. The axial
orbital is also the noncorrelated vehicle for coupling be-
tween oxygens in the layer. It therefore seems plausible
that contraction of the axial orbital around the CuO2 layer,
away from the nonstoichiometric layers, will strengthen
the phase coherence and thus increase Tc max. Thermal
excitation of nodal quasiparticles [30], on the other hand,
seems not to be the mechanism by which HTSC is de-

stroyed, because the axial orbital does not influence the
band in the nodal direction. Finally, we mention that
the correlation between r and Tc max does not extend to
electron-doped cuprates, where the mechanism for super-
conductivity thus seems to be different.

Discussions with H. Beck, I. Bozovic, and Z.-X. Shen
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Cu and O NMR studies of the magnetic properties of YBa2Cu306 63 (T, =62 K)
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The microscopic magnetic properties of the Cu02 planes in YBa2Cu306 63 (T, =62 K) have been
investigated in Cu and 0 NMR experiments. Unlike the fully oxygenated Y-Ba-Cu-07 (T, =90 K),
the various components of the Cu and 0 Knight-shift tensors show strong but identical temperature
dependences in the normal state. This supports the picture that there is only one spin component in
the Cu02 planes. The spin susceptibility deduced from Knight-shift results shows significant reduc-
tion with decreasing temperature in the normal state. The temperature dependences of the
nuclear-spin-relaxation rates (1/T& ) are very different for the Cu and the 0 sites. 1/( T& T) at the O
sites is nearly proportional to the spin susceptibility. 1/(T& T) at the Cu sites shows a broad peak
around 150 K. We discuss these relaxation behaviors based on a model of the dynamical spin sus-
ceptibility proposed by Millis, Monien, and Pines.

I. INTRODUCTION

The role played by magnetism, particularly the nature
of spin fluctuations, is one of the central issues of the
high-T, copper oxide superconductors. The importance
of magnetism is suggested by the proximity of the super-
conducting phase to the antiferromagnetic insulating
phase as the composition is changed. In the antiferro-
magnetic insulators such as La2Cu04 and YBazCu306,
each Cu atom in the two-dimensional (2D) Cu02 layers
has 2+ valence (3d configuration). The ground state
and the magnetic excitations of these compounds are well
described by a 2D, s =—,

' Heisenberg model. ' The
long-range antiferromagnetic order is easily destroyed by
doping a small number of additional holes into the Cu02
planes. For sufficient doping the system becomes metallic
and superconducting. Various high-energy spectroscopic
data show that these doped holes mostly occupy the 0 2p
states leaving the Cu valence to be 2+. ' ' 0 and Y
Knight-shift results on Yaa2Cu307 strongly support the
fact that doped holes go into the 0 2p states. '

Neutron-scattering experiments performed on
La& Sr Cu04 (Ref. 8) and YBazCu307 (Ref. 9) re-
vealed that short-range antiferromagnetic correlations
persist into the superconducting phase. However, an ap-
propriate description of the magnetic correlations is still
a subject of controversy. An important problem here is
whether the Cu 3d and 0 2p holes have distinct spin de-
grees of freedom and different spin dynamics' or wheth-
er the hybridization between these states is so strong that
the system is described by a single spin component with
unique dynamics. A particular model of the latter case
was presented by Zhang and Rice." They proposed that
the spin of a doped hole forms a local singlet state with
the neighboring Cu spin with such a large singlet binding
energy that 0 2p holes make no contribution to the spin
susceptibility. It may also be possible that the supercon-
ducting materials are already so heavily doped that the

charge-transfer gap is not clearly defined and the states
near the Fermi level are properly described by the Cu d
and 0 p hybridized band in a way similar to the heavy
electron materials. ' In this case, the magnetic properties
are described also by a single-spin component.

Nuclear magnetic and quadrupole resonance (NMR
and NQR) have been extensively used as microscopic
probes of the magnetic properties of high-T, compounds.
The unique power of these techniques lies in their capa-
bility to distinguish behaviors at different atoms and
different crystallographic sites. The most extensive reso-
nance studies have been done in the Yaa2Cu307 y sys-
tem, particularly on the fully oxygenated (y =0) material,
using ' Cu, ' 0, and Y nuclei. A significant feature
of this system is that one can control the concentration of
doped holes and the superconducting transition tempera-
ture (T, ) by changing the oxygen content y. ' In particu-
lar, two homogeneous phases are known so far, one with
y =0 (T, =90 K) and the other with y =0.3 —0.5 (T, =60
K).

It has already been reported that the magnetic proper-
ties of the 60-K phase are very different from those of ful-
ly oxygenated material. The magnetic susceptibility y( T)
of the 60-K phase decreases with decreasing tempera-
ture, ' in contrast to the T-independent Pauli-like suscep-
tibility in the y =0 material, as shown in Fig. 1. This T
dependence is partly associated with the spin susceptibili-
ty of the Cu02 plane as revealed by the Y and Cu
Knight-shift data. ' ' The Y and Cu nuclear relaxa-
tion rates also show quite different behaviors from the
y =0 material. ' ' Since the detailed magnetic proper-
ties depend on the sample preparation method as well as
the precise value and homogeneity of the oxygen content,
it is important to make various NMR measurements on a
single sample. This motivation led us to perform Cu
and ' 0 NMR experiments on a well-characterized
YBa2Cu306 63 (y =0.37) sample, the results of which are
presented below.
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ceptibility associated with the 2p states. Similarly the
spin part of the isotropic Knight shift,

' K;„=(K„+K+K, )/3, (5)

' K,„(T) =0.1886 ' K, ( T) +0.151%,
' K;,o(T)=1.057 ' K, (T)+0.039%,
~K,b(T)=1.522 ' K, (T)+0.32% .

(6)

is coupled mainly to the 2s states. Since the energy level
of the 2s states is far from the Fermi level in this system,
the spin density on the 2s states is produced only by the
hybridization with neighboring Cu 3d states and/or 0 2p
states. The spin part of ' E,„is positive in both y =0 and
y =0.37 material. This indicates that the spin density at
the O(2, 3) sites resides on the 2p orbital extending along
the Cu—0 bond axis.

Since the spin part of K,b is exclusively coupled to
yd, a comparison of the T dependence of the various Cu
and 0 Knight-shift components will give direct informa-
tion about the difFerence or similarity in the behaviors of

and y and an important clue to the problem of
whether the single-spin or two-spin component model is
appropriate.

Our major finding is that all components of the Cu and
0 Knight shifts show the same T dependence. More pre-
cisely, the following relations hold among ' K,„, ' K;„,

K,b [K,& at the Cu(2) sites] and ' K, for T )60 K (nor-
mal state):

K, (T)=A;y, ;„(T)+K;„b. (7)

These relations are demonstrated in Fig. 8, where these
components are plotted with difFerent scales and origins
for the vertical axes. In this plot all the data in the nor-
mal state lie on a single curve. Systematic deviations
from these relations are seen below 60 K, which is
presumably due to the local field produced by diamagnet-
ic supercurrents.

This plot strongly supports the view that the spin part
of each component has the same T dependence. Indeed,
values of the residual Knight shift at T =0 obtained from
this plot, as described below, agree with the orbital
Knight shift in the y =0 material. ' K,„(0)is determined
by extrapolating the data to T =0, assuming that the spin
part becomes zero at T =0. This is justified because K,„
is the di6'erence of two components, both with HLc, and
the efFect of the diamagnetic current will be canceled.
Thus we obtain ' K,„(0)=0.013+0.002%. The residual
Knight shifts of other components were estimated from
Eq. (5) and the value of ' K,„(0): ' K, (0)= —0.014+0.01%, ' K;„(0)=0.024+0.011 %, K,b(0)
=0.30+0.02%%uo. These values are virtually unchanged
from the orbital Knight shift in the y =0 material within
the experimental error ( ' K,„„b=0.013+0.004 %,

K,~,„b=0.28+0.02% in they =0 materiaP' ).
The relations in Eq. (6) thus indicate that the spin part

of all the Knight-shift components have a common T
dependence,
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hand, for \v<65 meV, the integrated response at the optical
position is consistent with zero. Thus \vg lies between 65
and 82 meV.

A more accurate estimate of the optical gap can be made
from Fig. 3. This spectrum shows data collected as a func-
tion of \v with Ei5110 meV and integrated over wave
vectors with 0.45<h<0.55, i.e., over the spin-wave cones
emanating from ( 1

2, 1
2,l). The integration range is restricted to

reduce phonon contamination in the spectrum. Due to energy
and momentum conservation in the scattering process, Qz
varies with \v in the way indicated by the horizontal axes of
Fig. 3. Thus, Fig. 3 displays the local susceptibilities associ-
ated with the acoustic and optical modes, weighted by their

Qz-dependent structure factors. At lower frequencies
(\v&J i), the 2D local susceptibility associated with the
acoustic mode is essentially v independent and that associ-
ated with the optical mode has a step at \vg ~see solid lines
in Fig. 2!. Consequently, in Fig. 3 we expect to observe a
simple sinusoidal modulation with Qz due to the acoustic
mode, x2D9 (Qz ,v)}sin2( 1

2DzQz) for v,vg . For v>vg , a
second sinusoidal modulation of almost equal amplitude and
p/2 out of phase, due to the optical mode, is superposed,
yielding a Qz- ~and v-! independent signal. By inspection,
we can see that above approximately 70 meV the intensity is
constant and below this value the characteristic acoustic
modulation is observed. A resolution-corrected fit of Eqs.
~2!–~4! to the data yields a value10 for the optical gap of
\vg57465 meV.

The optical mode gap is simply proportional to the geo-
metric mean of J i and J' , and so by itself, its measurement
establishes neither J' nor J i . Indeed, to determine J i and
J' , it is necessary to determine not only \vg , but also the
spin-wave dispersion as a function of in-plane momentum.
We have therefore collected data at energy transfers suffi-
ciently large to make the dispersion obvious. Figure 4 shows

FIG. 2. The 2D local susceptibility as a function of energy trans-
fer obtained by integrating over spin-wave peaks and correcting for
the Cu 21 magnetic form factor, Bose factor, and instrumental reso-
lution. ~a! acoustic positions and ~b! optical positions. The figure is
a compilation based on the analysis of data such as those in Fig. 1
with various incident energies. Solid lines correspond to fits to spin
wave theory.

FIG. 3. Data collected with Ei5110 meV, integrated over the
spin-wave cones in the (Qx ,Qy) plane near Q5( 1

2, 1
2,l) and cor-

rected for the Cu 21 magnetic form factor and Bose factor. The
resulting spectrum is collected along a trajectory in (Qz ,\v) de-
fined on the upper and lower axes. Under these conditions the sinu-
soidal intensity modulation with Qz will disappear at \vg'74
meV. Solid line corresponds to a fit to spin wave theory. Dotted line
is the acoustic mode contribution.

FIG. 4. ~a! The dispersion relation obtained from independent
fits at each energy transfer ~all data in paper!. Closed circles and
solid line are for acoustic modes, open circles and dotted line are
optical modes. ~b!–~e! Constant energy scans showing high-
frequency magnetic scattering from YBa2Cu3O6.15 . Data were col-
lected with kii(001) and Ei5600 meV. Counting time was 29 h at
170 mA proton current with a Ta target. Solid lines are resolution-
corrected fits of a linear spin-wave model for a bilayer ~see text!.
Resolution widths were D\v520 meV and DQ50.1 and 1 Å 21

parallel and perpendicular to the scattering plane, respectively.
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three higher-order spin couplings (J 0, J 00, and Jc! have
similar effects on the dispersion relation and intensity
dependence; therefore they cannot be determined inde-
pendently from the data without additional constraints.
We first assume that only J and J 0 are significant as in
[18], i.e., J 00 ! Jc ! 0. The solid lines in Fig. 2 are fits
to a one-magnon cross section, and Fig. 3 shows fits to
the extracted dispersion relation and spin-wave intensity.
As can be seen in the figures, the model provides an
excellent description of both the spin-wave energies and
intensities. The extracted nearest-neighbor exchange
J ! 111.8 6 4 meV is antiferromagnetic, while the
next-nearest-neighbor exchange J 0 ! 211.4 6 3 meV
across the diagonal is ferromagnetic. A wave-vector-
independent quantum renormalization factor [12] Zc !
1.18 was used in converting spin-wave energies into ex-
change couplings. The zone-boundary dispersion becomes
more pronounced upon cooling as shown in Fig. 3A, and
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FIG. 3. (A) Dispersion relation along high symmetry direc-
tions in the 2D Brillouin zone, see inset (C), at T ! 10 K (open
symbols) and 295 K (solid symbols). Squares were obtained
for Ei ! 250 meV, circles for Ei ! 600 meV, and triangles
for Ei ! 750 meV. Points extracted from constant-E(-Q) cuts
have a vertical (horizontal) bar to indicate the E(Q) integration
band. Solid (dashed) line is a fit to the spin-wave dispersion re-
lation at T ! 10 K (295 K) as discussed in the text. (B) Wave-
vector dependence of the spin-wave intensity at T ! 295 K
compared with predictions of linear spin-wave theory shown by
the solid line. The absolute intensities [11] yield a wave-vector-
independent intensity-lowering renormalization factor of 0.51 6
0.13 in agreement with the theoretical prediction of 0.61 [12]
that includes the effects of quantum fluctuations.

the dispersion at T ! 10 K can be described by the
couplings J ! 104.1 6 4 meV and J 0 ! 218 6 3 meV.

A ferromagnetic J 0 contradicts theoretical predictions
[19], which give an antiferromagnetic superexchange J 0.
Wave-vector-dependent quantum corrections [20] to the
spin-wave energies can also lead to a dispersion along the
zone boundary even if J 0 ! 0, but with sign opposite to our
result. Another problem with a ferromagnetic J 0 comes
from measurements on Sr2Cu3O4Cl2 [21]. This material
contains a similar exchange path between Cu21 ions to
that corresponding to J 0 in La2CuO4 and analysis of the
measured spin-wave dispersion leads to an antiferromag-
netic exchange coupling for this path [21].

While we cannot definitively rule out a ferromagnetic
J 0, we can obtain a natural description of the data in terms
of a one-band Hubbard model [22], an expansion of which
yields the spin Hamiltonian in Eq. (1) where the higher-
order exchange terms arise from the coherent motion of
electrons beyond nearest-neighbor sites [13–15]. The
Hubbard Hamiltonian has been widely used as a starting
point for theories of the cuprates and is given by

H ! 2t
X

"i,j#,s!",#
$cy

iscjs 1 H.c.! 1 U
X

i
ni"ni# , (2)

where "i, j# stands for pairs of nearest neighbors counted
once. Equation (2) has two contributions: the first is
the kinetic term characterized by a hopping energy t
between nearest-neighbor Cu sites and the second the
potential energy term with U being the penalty for
double occupancy on a given site. At half filling, the
case for La2CuO4, there is one electron per site and for
t%U ! 0, charge fluctuations are entirely suppressed
in the ground state. The remaining degrees of freedom
are the spins of the electrons localized at each site. For
small but nonzero t%U, the spins interact via a series of
exchange terms, as in Eq. (1), due to coherent electron
motion touching progressively larger numbers of sites.
If the perturbation series is expanded to order t4 (i.e.,
4 hops), one regains the Hamiltonian (1) with the ex-
change constants J ! 4t2%U 2 24t4%U3, Jc ! 80t4%U3,
and J 0 ! J 00 ! 4t4%U3 [13–15]. We again fitted the
dispersion and intensities of the spin-wave excitations
using these expressions for the exchange constants and
linear spin-wave theory. The fits are indistinguishable
from those for variables J and J 0. Again assuming
[23] Zc ! 1.18, we obtained t ! 0.33 6 0.02 eV and
U ! 2.9 6 0.4 eV (T ! 295 K), in agreement with t
and U determined from photoemission [24] and optical
spectroscopy [25]. The corresponding exchange val-
ues are J ! 138.3 6 4 meV, Jc ! 38 6 8 meV, and
J 0 ! J 00 ! Jc%20 ! 2 6 0.5 meV (the parameters at
T ! 10 K are t ! 0.30 6 0.02 eV, U ! 2.2 6 0.4 eV,
J ! 146.3 6 4 meV, and Jc ! 61 6 8 meV). Us-
ing these values, the higher-order interactions amount
to &11% (T ! 295 K) of the total magnetic energy
2$J 2 Jc%4 2 J 0 2 J 00! required to reverse one spin on a
fully aligned Néel phase.
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We first assume that only J and J 0 are significant as in
[18], i.e., J 00 ! Jc ! 0. The solid lines in Fig. 2 are fits
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band. Solid (dashed) line is a fit to the spin-wave dispersion re-
lation at T ! 10 K (295 K) as discussed in the text. (B) Wave-
vector dependence of the spin-wave intensity at T ! 295 K
compared with predictions of linear spin-wave theory shown by
the solid line. The absolute intensities [11] yield a wave-vector-
independent intensity-lowering renormalization factor of 0.51 6
0.13 in agreement with the theoretical prediction of 0.61 [12]
that includes the effects of quantum fluctuations.

the dispersion at T ! 10 K can be described by the
couplings J ! 104.1 6 4 meV and J 0 ! 218 6 3 meV.

A ferromagnetic J 0 contradicts theoretical predictions
[19], which give an antiferromagnetic superexchange J 0.
Wave-vector-dependent quantum corrections [20] to the
spin-wave energies can also lead to a dispersion along the
zone boundary even if J 0 ! 0, but with sign opposite to our
result. Another problem with a ferromagnetic J 0 comes
from measurements on Sr2Cu3O4Cl2 [21]. This material
contains a similar exchange path between Cu21 ions to
that corresponding to J 0 in La2CuO4 and analysis of the
measured spin-wave dispersion leads to an antiferromag-
netic exchange coupling for this path [21].

While we cannot definitively rule out a ferromagnetic
J 0, we can obtain a natural description of the data in terms
of a one-band Hubbard model [22], an expansion of which
yields the spin Hamiltonian in Eq. (1) where the higher-
order exchange terms arise from the coherent motion of
electrons beyond nearest-neighbor sites [13–15]. The
Hubbard Hamiltonian has been widely used as a starting
point for theories of the cuprates and is given by
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where "i, j# stands for pairs of nearest neighbors counted
once. Equation (2) has two contributions: the first is
the kinetic term characterized by a hopping energy t
between nearest-neighbor Cu sites and the second the
potential energy term with U being the penalty for
double occupancy on a given site. At half filling, the
case for La2CuO4, there is one electron per site and for
t%U ! 0, charge fluctuations are entirely suppressed
in the ground state. The remaining degrees of freedom
are the spins of the electrons localized at each site. For
small but nonzero t%U, the spins interact via a series of
exchange terms, as in Eq. (1), due to coherent electron
motion touching progressively larger numbers of sites.
If the perturbation series is expanded to order t4 (i.e.,
4 hops), one regains the Hamiltonian (1) with the ex-
change constants J ! 4t2%U 2 24t4%U3, Jc ! 80t4%U3,
and J 0 ! J 00 ! 4t4%U3 [13–15]. We again fitted the
dispersion and intensities of the spin-wave excitations
using these expressions for the exchange constants and
linear spin-wave theory. The fits are indistinguishable
from those for variables J and J 0. Again assuming
[23] Zc ! 1.18, we obtained t ! 0.33 6 0.02 eV and
U ! 2.9 6 0.4 eV (T ! 295 K), in agreement with t
and U determined from photoemission [24] and optical
spectroscopy [25]. The corresponding exchange val-
ues are J ! 138.3 6 4 meV, Jc ! 38 6 8 meV, and
J 0 ! J 00 ! Jc%20 ! 2 6 0.5 meV (the parameters at
T ! 10 K are t ! 0.30 6 0.02 eV, U ! 2.2 6 0.4 eV,
J ! 146.3 6 4 meV, and Jc ! 61 6 8 meV). Us-
ing these values, the higher-order interactions amount
to &11% (T ! 295 K) of the total magnetic energy
2$J 2 Jc%4 2 J 0 2 J 00! required to reverse one spin on a
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The magnetic excitations of the square-lattice spin-1/2 antiferromagnet and high-Tc parent compound
La2CuO4 are determined using high-resolution inelastic neutron scattering. Sharp spin waves with abso-
lute intensities in agreement with theory including quantum corrections are found throughout the Brillouin
zone. The observed dispersion relation shows evidence for substantial interactions beyond the nearest-
neighbor Heisenberg term which can be understood in terms of a cyclic or ring exchange due to the
strong hybridization path around the Cu4O4 square plaquettes.

DOI: 10.1103/PhysRevLett.86.5377 PACS numbers: 75.30.Ds, 71.10.Fd, 75.10.Jm, 75.40.Gb

While there is consensus about the basic
phenomenology —electron pairs with nonzero angu-
lar momentum, unconventional metallic behavior in the
normal state, tendencies towards inhomogeneous charge
and spin density order —of the high temperature copper
oxide superconductors, there is no agreement about the
microscopic mechanism. After over a decade of intense
activity, there is not even consensus as to the simplest
“effective Hamiltonian,” which is a shorthand description
of the motions and interactions of the valence electrons,
needed to account for cuprate superconductivity. Because
much speculation is centered on magnetic mechanisms
for the superconductivity, it is important to identify the
interactions among the spins derived from the unfilled
Cu21 d shells. The present experiments show that there
are significant (on the scale of the pairing energies for
high-Tc superconductivity) interactions coupling spins at
distances beyond the 3.8 Å separation of nearest-neighbor
Cu21 ions. Cyclic or ring exchange due to a strong hy-
bridization path around the Cu4O4 squares (see Fig. 1A),
from which the cuprates are built, provides a natural
explanation for the measured dispersion relation. CuO2
planes are thus the second example of an important Fermi
system (3He is the other [1]) where significant cyclic
exchange terms have been deduced.

Magnetic interactions are revealed through the wave-
vector dependence or dispersion of the magnetic excita-
tions. In magnetically ordered materials, the dominant
excitations are spin waves which are coherent (from site
to site as well as in time) precessions of the spins about
their mean values. The lower frame of Fig. 1B shows
the dispersion relation calculated using conventional linear
spin-wave theory in the classical large-S limit, where the
only magnetic interaction is a strong nearest-neighbor su-
perexchange coupling J [2]. We identify wave vectors by
their coordinates (h, k! in the two-dimensional (2D) recip-
rocal space of the square lattice. Spin waves emerge from

the wave vector "1#2, 1#2! characterizing the simple anti-
ferromagnetic (AF) unit cell doubling in La2CuO4 [3], and
disperse to reach a maximum energy 2J that is a constant
along the AF zone boundary marked by dashed squares
in Fig. 1B. Longer-range interactions manifest themselves
most simply at the zone boundary. The upper frame of
Fig. 1B shows the dispersion calculated with modest inter-
actions between next nearest neighbors. Virtually the only
visible effect of the additional interactions is the dispersion
of the spin waves along the zone edge. Thus, experiments
to test for such interactions must measure the spin waves
along the zone boundary. Only inelastic neutron scattering
with high energy and wave-vector resolution can accom-
plish this, although photon spectroscopy [4–7] has led to
suspicions of such interactions.

For La2CuO4, a requirement that complicates meeting
the resolution goals is the need to use neutrons with
energies in the epithermal, 0.1–1.0 eV, range rather
than in the more conventional cold and thermal [8],
2–50 meV, regimes. An early high energy neutron
scattering experiment [9] revealed well-defined spin-wave
excitations throughout the Brillouin zone which could be
modeled using a nearest-neighbor Heisenberg exchange
J ! 136 meV. The directions of the scattered neutrons
were specified only to within the solid angle determined by
the large detector dimensions. Thus, the measured spectra
represented averages over large portions of the reciprocal
space, so that dispersion along the zone boundary was
unresolvable and only an upper bound could be placed
on further neighbor couplings. The advance enabling
the present investigation is the use of position-sensitive
detectors for the scattered neutrons, which increases the
wave-vector resolution by an order of magnitude. The
new detector bank is installed in the direct-geometry
high-energy transfer (HET) time-of-flight spectrome-
ter at the ISIS proton-driven pulsed neutron spallation
source.
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the diamagnetic contribution (1X10 emu/mol) of the
ionic cores. There are important difFerences between
these data and those reported earlier by Schneemeyer
et al. , ' where the oxygen vacancy content was not
determined. Our data and those of Takagi et al. are in
excellent agreement. For the lowest x (x &0.02, not
shown in Fig. 6), muon spin rotation and neutron scatter-
ing experiments have shown the existence of a three-
dimensional antiferromagnetic (AF) ordering of the Cu +
moments with strong two-dimensional correlations above
the Neel temperature T&. ' As shown schematically
in Fig. 4, doping with holes destroys the Neel state and
the large, dominant anomaly in y(T) associated with it,
but short-range two-dimensional AF correlations are re-
tained in the Cu-0 planes. ' For x )0.02, y(T) is
dominated by these 2D correlations, and it is their evolu-
tion with increasing Sr content x that we want to discuss.

The main characteristic of such a two-dimensional AF
spin system with a strong exchange interaction is expect-
ed ' to be the absence of long-range order and the pres-
ence of a relatively weakly temperature-dependent y( T).
Furthermore, the value of the magnetic moment is
strongly reduced from its Neel value because of zero-
point deviations. It reaches 60% of S =—,

' in the case of a
quadratic Heisenberg antiferromagnet, according to re-
cent Monte Carlo calculations or spin-wave theory.
In the region 0.02&x &0. 14, y(T) is only weakly tem-
perature dependent, consistent with the behavior of ex-
changed coupled Cu + spins with a large in-plane AF ex-
change interaction J. The most reliable discussion of
these data centers on relating the magnitude of y,p to
this 2D exchange coupling J, i.e., y, ;„ is expected to be
inversely proportional to J in the region where T (J. To
be more quantitative, ' for a 2D system near T,„ the

2.0

0
E

E
1 0

C3

La2 „Sr„Cu04
~ oo ~~ ~

oooo ooo
oooo oooo

~oooo oooo oooo'o ~ ooo o ~ o ~~ooo 'oooo 'oooooooooSI+oooo ~

~ oo \ o oo ~ ooooo to 0o oo ooo oooo It5 O ~Igg gg0.19 """ ~o oo ooo ~oo
~ oooo oo oooo oooooooooollf ooo IIelec) ~ Qooo ooo~ e oooo

~oooo oooooooooooooooooooooo

0.17 "
~oo ~ ~ ~ o ~

~ oo ~ ~ ~ ~oo
~o o ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~

0 p 0 p 0
o o o0

~ ~ ~
~ ~

~ ~
~ ~0.15 ~ ~ ~

~ ~

0.12 "
0.08 x = 0.04

0—
2.0

0
E

1.0—E

I
C)

cC

0.25.
~ ~

La2 „Sr„Cu04
~oo oo ~o ooo~ oo ooo~ o ~

~oo ooo
~oo oooo ooooo 'oooo~ o oo0.31

~o0.33 oooo oo ~ ooo oo oo'oooo oooo '~ oooo0 ~ ~ ~ ~ ~o ~ oooo oooo ooo ~ ~ o ~oo~oo oooo oooo ~o ~ ~ ~ ~ ~oooo egg ~ ~oo oo~ ~ ~ ~ ~ ~ ~ ~ SfIIQI gge~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

0 I

100
I

200
Temperature (K)

I

300

(b)

400

FIG. 6. Normal-state magnetic susceptibility of
La2 Sr„Cu04 compounds which, for increasing x, (a) increases
for 0.04&x &0.25, and (b) decreases for 0.25&x &0.33. The
filled triangles mark the temperatures where y is a maximum.
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Properties that change as superconductivity disappears at high-doping concentrations
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In the system La& Sr„Cu04, as x and p (the [CuO~]~ charge) are increased, the superconduct-
ing transition temperature erst increases, then peaks becoming nonsuperconducting for x 0.26.
%e report here a search for changes in physical properties at the values of x where T, is observed to
change its behavior. The in-plane lattice constants and the normal resistivity both show a continued
monotonic decrease over this entire region, suggesting that no major electronic changes occur. The
tetragonal-to-orthorhombic transition temperature T, also decreases with increasing x and becomes
unobservable for x 0. 19, suggesting that this structural transition itself is unrelated to the disap-
pearance of superconductivity that occurs at higher doping levels. The magnetic spin susceptibility

p ( T) generally rises gradually with increasing doping (reAecting decreasing spin-spin interac-
tions}, reaches a maximum near x -0.25, and then decreases. There is a weak peak in y,p;„(T) as a
function of temperature at T =T,„. As a function of increasing x, T „falls to zero near x -0.25.
These two observations might be related to the disappearance of superconductivity, since all three
occur near the same value of Sr content x.

The system La2 Sr Cu04 is potentially ideal for
studying high-temperature superconductivity due to its
simple structure and wide range of solid solution, in
which the K2NiF4 structure is maintained over the range
O~x ~1.33. Corresponding to this large range of dop-
ing, there is potentially a wide range of values of the
charge p on the [CuOz]~ sheets, over which high-
temperature superconductivity can be studied. In prac-
tice, however, as the Sr content is increased, oxygen va-
cancies start to appear and severely limit this range to
p (0.15, depending on the preparation conditions. Pre-
paring samples under a high pressure (100 bars) of oxy-
gen has recently been shown to extend the range of ac-
cessible charge up to p =0.4. From now on, we shall re-
strict our discussion to samples containing no oxygen va-
cancies and (for reasons discussed later) we shall charac-
terize them by their Sr content x. As a function of x the
behavior of the observed superconducting transition tem-
perature T, is shown in Fig. 1(a). At low x, superconduc-
tivity was found ' to appear for x )0.06, with T, rising
with increasing x until maximum values were reached for
both T, (36 K) and x (0.15) on those samples. Measure-
ments on samples with higher x more clearly reveal that
T, levels ofF'at T, =36 K until x =0.19, beyond which T,
surprisingly decreases, until about x =0.26, above which
superconductivity is no longer observed. This behavior
has recently been confirmed by Takagi et al. Most of
the work on this system has focused on the region of low
x, where superconductivity erst starts to appear. This re-
gion is complicated by the competition with the antifer-
romagnetic state near x =0, by spin-glass effects, by the
presence of another phase, ' and by the conductivity

which shows evidence of partial localization. In this pa-
per, we concentrate on the region of large x, where the
conductivity is metallic and yet superconductivity anom-
alously disappears. We present measurements of the in-
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the diamagnetic contribution (1X10 emu/mol) of the
ionic cores. There are important difFerences between
these data and those reported earlier by Schneemeyer
et al. , ' where the oxygen vacancy content was not
determined. Our data and those of Takagi et al. are in
excellent agreement. For the lowest x (x &0.02, not
shown in Fig. 6), muon spin rotation and neutron scatter-
ing experiments have shown the existence of a three-
dimensional antiferromagnetic (AF) ordering of the Cu +
moments with strong two-dimensional correlations above
the Neel temperature T&. ' As shown schematically
in Fig. 4, doping with holes destroys the Neel state and
the large, dominant anomaly in y(T) associated with it,
but short-range two-dimensional AF correlations are re-
tained in the Cu-0 planes. ' For x )0.02, y(T) is
dominated by these 2D correlations, and it is their evolu-
tion with increasing Sr content x that we want to discuss.

The main characteristic of such a two-dimensional AF
spin system with a strong exchange interaction is expect-
ed ' to be the absence of long-range order and the pres-
ence of a relatively weakly temperature-dependent y( T).
Furthermore, the value of the magnetic moment is
strongly reduced from its Neel value because of zero-
point deviations. It reaches 60% of S =—,

' in the case of a
quadratic Heisenberg antiferromagnet, according to re-
cent Monte Carlo calculations or spin-wave theory.
In the region 0.02&x &0. 14, y(T) is only weakly tem-
perature dependent, consistent with the behavior of ex-
changed coupled Cu + spins with a large in-plane AF ex-
change interaction J. The most reliable discussion of
these data centers on relating the magnitude of y,p to
this 2D exchange coupling J, i.e., y, ;„ is expected to be
inversely proportional to J in the region where T (J. To
be more quantitative, ' for a 2D system near T,„ the
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filled triangles mark the temperatures where y is a maximum.
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The doping of charge carriers into the CuO2 planes of copper oxide
Mott insulators causes a gradual destruction of antiferromagnet-
ism and the emergence of high-temperature superconductivity.
Optimal superconductivity is achieved at a doping concentration
p beyond which further increases in doping cause a weakening
and eventual disappearance of superconductivity. A potential
explanation for this demise is that ferromagnetic fluctuations com-
pete with superconductivity in the overdoped regime. In this case,
a ferromagnetic phase at very low temperatures is predicted to ex-
ist beyond the doping concentration at which superconductivity
disappears. Here we report on a direct examination of this scenario
in overdoped La2−xSrxCuO4 using the technique of muon spin
relaxation. We detect the onset of static magnetic moments of
electronic origin at low temperature in the heavily overdoped non-
superconducting region. However, the magnetism does not exist in
a commensurate long-range ordered state. Instead it appears as a
dilute concentration of static magnetic moments. This finding
places severe restrictions on the form of ferromagnetism that
may exist in the overdoped regime. Although an extrinsic impurity
cannot be absolutely ruled out as the source of the magnetism that
does occur, the results presented here lend support to electronic
band calculations that predict the occurrence of weak localized
ferromagnetism at high doping.

Attempts within the framework of standard theories have
failed to explain how high-temperature superconductivity

emerges from charge carrier doping of an antiferromagnetic
(AF) Mott insulator (1). The conventional Bardeen–Cooper–
Schrieffer (BCS) theory of low-temperature superconductors
(2) assumes that above the critical transition temperature (Tc)
the electrons form a Landau Fermi liquid, and that superconduc-
tivity arises from pair condensation of the associated low-energy
excitations (quasiparticles). What is clear in the case of copper
oxides is that over the initial doping range where superconduc-
tivity first appears, ordinary Landau Fermi liquid theory does
not apply. This realization has prompted theories in which the
properties of the ordinary Fermi liquid are hidden (3), or alter-
natively only some properties of the Fermi liquid persist (4).

A BCS-type theory may be applicable in the heavily overdoped
region, where an ordinary Fermi liquid is observed (5–7). How-
ever, the recent proposal by Kopp et al. (8) that ferromagnetic
(FM) fluctuations compete with d-wave superconductivity is a
challenge to the notion that overdoped copper oxides strictly con-
form to such conventional wisdom. The primary motivation for
their hypothesis is a strong upturn in the magnetic susceptibility
immediately above Tc for doping levels greater than p ∼ 0.19
(9–14). A tendency toward FM order for high charge doping
(Fig. 1) is supported by electronic band calculations for super
cells of La2−xBaxCuO4 (15). However, these calculations favor
the appearance of weak ferromagnetism about concentrated
regions of the Ba-dopant atom, rather than the emergence of
long-range FM order.

The muon spin relaxation (μSR) method is similar to NMR,
but is a more sensitive probe of static or slowly fluctuating

magnetism. Furthermore, μSR exploits muon beams possessing
a naturally created ∼100% spin polarization, and hence unlike
NMR does not require constant or time-varying external mag-
netic fields. Zero-field (ZF) μSR experiments on La2−xSrxCuO4

(LSCO) above 2 K show the absence of static electronic moments
for p > 0.12 (16, 17), which we have confirmed by measurements
on LSCO single crystals with Sr content x ¼ 0.15, 0.166, 0.176,
0.196, 0.216, 0.24, and 0.33, with corresponding doping concen-
trations p ¼ 0.15, 0.166, …, 0.33 (henceforth referred to as
LSCO15, LSCO166, …, LSCO33). However, the onset of static
FM order is expected to occur at a very low temperature, deter-
mined by the weak interlayer coupling of the CuO2 planes (8).
Consequently, we have extended the ZF-μSR measurements
down to 0.02 K using a dilution refrigerator.

Results and Discussion
The time evolution of the muon spin polarization PðtÞ is the phy-
sical quantity that is directly measured in the μSR experiments.
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Fig. 1. Schematic phase diagram of La2−xSrxCuO4. The dark-green area
represents the region in which static long-range AF order is observed. In
the light-green region, inhomogeneous static magnetism (SM) occurs that
coexists with superconductvity between 0.05 < x < 0.13. The red region re-
presents the superconducting (SC) phase and the red open circles are the
Tc values of the single crystals studied here by μSR. The purple area beyond
the SC dome represents the long-range static FM phase predicted by Kopp et
al. (8). FM fluctuations associated with this phase are predicted to compete
with superconductivity above x ∼ 0.19. Alternatively, FM clusters (16) may ap-
pear above x ∼ 0.19 and freeze into a dilute FM phase beyond x ¼ 0.27,
which is also represented by the purple area.
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We demonstrate the presence of ferromagnetic (FM) fluctuations in the superconducting and non-
superconducting heavily overdoped regimes of high-temperature superconducting copper oxides, using
ðBi; PbÞ2Sr2CuO6þδ (Bi-2201) single crystals. Magnetization curves exhibit a tendency to be saturated in
high magnetic fields at low temperatures in the heavily overdoped crystals, which is probably a precursor
phenomenon of a FM transition at a lower temperature. Muon spin relaxation detects the enhancement
of spin fluctuations at high temperatures below 200 K. Correspondingly, the ab-plane resistivity follows a
4=3 power law in a wide temperature range, which is characteristic of metals with two-dimensional FM
fluctuations due to itinerant electrons. As the Wilson ratio evidences the enhancement of spin fluctuations
with hole doping in the heavily overdoped regime, it is concluded that two-dimensional FM fluctuations
reside in the heavily overdoped Bi-2201 cuprates, which is probably related to the decrease in the
superconducting transition temperature in the heavily overdoped cuprates.

DOI: 10.1103/PhysRevLett.121.057002

In hole-doped high-temperature superconducting cup-
rates, the relationship between the antiferromagnetism
and superconductivity has intensively been studied.
Antiferromagnetic (AF) fluctuations, by which electron
paring is believed to be mediated, have been observed in
the underdoped and optimally doped regimes [1]. In the
overdoped regime where the superconducting transition
temperature Tc is depressed with hole doping, inelastic
neutron-scattering [2] and muon spin relaxation (μSR) [3]
experiments have revealed the weakening of the low-
energy AF spin correlation with hole doping. A recent
resonant inelastic x-ray scattering experiment, on the other
hand, has revealed that high-energy AF fluctuations persist
to the nonsuperconducting heavily overdoped regime [4].
This suggests that the suppression of superconductivity in
the heavily overdoped regime might not be related to AF
fluctuations.
In the heavily overdoped regime, unlike the general

belief of the nonmagnetic Fermi-liquidlike ground state,
phenomena incompatible with a simple Fermi-liquid pic-
ture have been observed. The Curie constant has increased
with hole doping in overdoped Tl2Ba2CuO6þδ (Tl-2201)
[5], La2−xSrxCuO4 (LSCO), and La2−xBaxCuO4 [6]. The
ab-plane electrical resistivity ρab has not exhibited a T2

behavior in heavily overdoped LSCO [7]. Therefore, there
might exist other ordered states hidden adjacent to the
superconducting phase.
Kopp et al. have insisted in terms of the quantum critical

scaling theory that the non-Fermi-liquidlike temperature
dependence of the magnetic susceptibility χ in nonsuper-
conducting heavily overdoped Tl-2201 is due to the exist-
ence of a ferromagnetic (FM) phase [8]. Electronic band
calculations have suggested that the ferromagnetism appears
locally around Ba clusters in overdoped La2−xBaxCuO4 [9].
A recent theoretical calculation of the spin dynamical
structure factor by the determinant quantum Monte Carlo
method has supported the occurrence of the ferromagnetism
in the heavily overdoped regime [10]. Experimentally,
Sonier et al. have reported from zero-field μSR measure-
ments in nonsuperconducting heavily overdoped LSCO that
the relaxation rate of muon spins is enhanced with decreas-
ing temperature below 0.9 K, suggesting the development
of spin fluctuations [11]. They have also reported that ρab
exhibits a T5=3 behavior in a wide temperature range from
60 K to room temperature. The T5=3 behavior is character-
istic of metals with three-dimensional FM fluctuations due to
itinerant electrons, according to the self-consistent renorm-
alization (SCR) theory of spin fluctuations [12]. The T5=3
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In Fig. 4, a new phase diagram of Bi-2201 is proposed
including the p dependences of RW and n. As characterized
by the increase in RW and the saturation of n around 4=3,
the region of FM fluctuations is shown in the heavily
overdoped regime. It is found that the magnetic ground
state changes from the AF to FM one with hole doping. The
FM fluctuations exist even in the superconducting heavily
overdoped regime, implying the interference between FM
fluctuations and the electron paring mediated by AF
fluctuations and resulting in the decrease in Tc with hole
doping in the heavily overdoped regime [8].
There exist two candidates for the origin of FM fluctua-

tions. One is the metallic ferromagnetism due to enhanced
spin fluctuations, the large density of states at the Fermi
level, and the good Fermi-surface nesting with the nesting
vector of q → 0. In fact, the value of RW indicates that spin
fluctuations are enhanced in the heavily overdoped regime.
It has been reported from the angle-resolved photoemission
spectroscopy [33,34] and scanning tunneling spectroscopy
[35] that the van Hove singularity resides close to the Fermi
level in heavily overdoped Bi-2201, suggesting the large
density of states at the Fermi level in the heavily overdoped
regime. A theoretical calculation based on the three-band
model has suggested that the q position where the spin
susceptibility is enhanced evolves from q ¼ ðπ; πÞ in the
parent compound toward q ¼ ð0; 0Þ with hole doping [36].
This situation is quite similar to that of Sr2−yLayRuO4 with
FM fluctuations [27]. All these are consistent with the
occurrence of the metallic ferromagnetism. The other
candidate is the double exchange interaction due to the
multiband structure. This is because Compton-scattering
measurements in LSCO [37] have suggested that holes
are doped mainly into the Cu3d3z2−r2 orbital in the
heavily overdoped regime, producing both Cu3dx2−y2
and Cu3d3z2−r2 spins and generating the FM interaction
due to the Hund coupling.

In conclusion, FM fluctuations exist in heavily over-
doped Bi-2201, suggesting the universal feature of the
hole-doped cuprates. The magnetic ground state changes
from the AF to FM one with hole doping. Moreover, the
FM fluctuations are probably related to the suppression of
superconductivity in the heavily overdoped regime. The
FM fluctuations may answer several unsolved non-Fermi-
liquidlike behaviors in the heavily overdoped regime.
For example, the broadening of nodal quasiparticle peaks
observed in the angle-resolved photoemission spectroscopy
of La1.78Sr0.22CuO4 [38] and Tl-2201 [39,40] may be
predominantly caused by the scattering of quasiparticles
by low-energy FM fluctuations [8]. The more detailed
relationship between the FM fluctuations and supercon-
ductivity in cuprates should be clarified in future.
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FIG. 17. (Color online) Dynamical susceptibility (intensity maps) for t0 = 0.2t (top) and t0 = 0.4t (bottom) and increasing x
in the paramagnetic phase, U = 7 eV. The special points are � = (0, 0) X = (⇡, 0), and M = (⇡,⇡). The spectra do not change
much further increasing x to 0.4.

for x = 0 (see Fig. 6) with a maximum at M which
persists till optimal doping. As in the x = 0 case, we
find that the spectra are very similar decreasing U to
Uc, leaving a slightly larger dispersion aside. Fig. 17 also
shows that, at su�ciently low frequency, the calculated
modes reflect the behavior of the static susceptibility
and the q-resolved relaxation rate. Finally, the spectrum
is qualitatively very similar for t

0 = 0.2t and t
0 = 0.4t,

although the intensity at the M point decreases in abso-
lute value increasing t

0. The energy of the maximum at
M is compatible with the resonance modes.
Increasing x beyond the underdoped regime the situ-

ation changes. Although a shadow of the original mode
stays, at already at optimal doping the maximum weight
starts to move away from the M point. One can then
identify incommensurate features at qXM and q�M, as
for the static susceptibility. For x = 0.25 the weight is
already mostly at �. Qualitatively the trend remains the
same for t0 = 0.2t and t

0 = 0.4t, but when t
0 is larger, the

figure shows that the intensity moves faster towards the
� point. This indicates that the bosonic spin excitations,
within the present modeling, are not, at the core, really
universal, although the shade of the small x spectra do
persist even for large x; below x = 0.15 the spectra look
very similar, however.

IV. CONCLUSIONS

We have studied the static and dynamical magnetic
properties of the t � t

0 Hubbard model in a parame-

ter regime relevant for high-temperature superconduct-
ing cuprates. When possible, we complement numerical
results with approximate analytic expressions. Our cal-
culations confirm previous conclusions61,65–68,70–77 show-
ing that the electronic properties are very sensitive to
the value of t0/t. In addition, we find a sharp change in
behavior entering the overdoped regime.
At half filling (x = 0), the calculated spin-wave spec-

tra are close to those obtained from standard spin-wave
theory, both in the paramagnetic and magnetic phase.
This remains true even for U approaches the insulator-to-
metal transition; in this regime, the spin-wave spectrum
is enhanced, however, due to the smaller charge fluctu-
ation energy. The trends with t

0
/t are approximately in

line with experimental observations so far.
For x 6= 0, the non-monotonic evolution of the uniform

susceptibility, reported thermodynamics experiments in
La2�xSrxCuO4, is fully captured by the model. The
turning point tends to move to larger x by increasing t

0.
The case of overdoped Tl2Ba2CuO6+y appears a further
confirmation of the trend. Also captured is the tendency
towards the formation of incommensurate structures for
small x and in systems characterized by a relatively small
t
0. For very large x and t

0 ferromagnetic instabilities are
favored instead.
The results obtained show that the nature of the mag-

netic response is strongly q dependent. Isosbestic points
mark regions of the Brillouin zone exhibiting di↵erent
scaling with the parameters U , t

0
/t, T . Thus, scaling

laws obtained, e.g., from the uniform susceptibility and
Knight shifts, should not be automatically extended to

• resonant mode



thanks to

• E. Koch, FZJ 
• X.J. Zhang, FZJ 
• N. Samani, FZJ 
• E. Adibi, FZJ 
• G. Zhang, CAS Hefei, China 
• A. Flesch, FZJ  
• A. Kiani, FZJ 
• J. Müsshoff, FZJ 
• E. Gorelov, XFEL   
• E. Sarvestani, FZJ 
• C. Autieri, FZJ 
• A. Chiesa, Uni Parma, Italy



thank you!


