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* m.lober@fz-juelich.de

Motivation
• continuous improvement of CPU-based simulation techniques create challenging bench-

marking targets for neuromorphic platforms
– neuronal simulations on conventional hardware still maintain higher flexibility at po-

tentially lower cost compared to novel dedicated hardware [1]
• spike communication is the bottleneck in simulations of brain-scale networks [2]
• e.g. the multi-area model of macaque visual cortex [3]

– 32 interconnected areas modelled as microcircuits [4]
– realistic connectivity
– single neuron resolution

⇒ structure-aware neuron distribution scheme combined with optimized spike-
communication framework to speed up neuronal simulations

Simulation phases of the multi-area model
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Strong-scaling benchmark of macaque multi-area model performed with NEST v3.6 on Jülich Supercomputer JURECA.

Algorithm
Conventional neuron distribution scheme
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• uniform occupation of compute nodes: ”round-robin”
• neurons of the same area are spread out on the hardware
• communication between compute nodes every smallest de-

lay of e.g. 0.1 ms

Structure-aware neuron distribution scheme
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• one/few compute nodes per area
• two communication pathways

– within an area: short delays (e.g. 0.1 ms)
– between areas: long delays (e.g. 1.0 ms)

⇒ faster communication within areas
⇒ fewer communication between areas

>0.1 ms

>1 ms

Example: structure-aware approach
• 10.000 neurons per area; average firing rate 10 spikes/s
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Results
Setup
• neuronal simulator tool NEST [5,6]
• benchmarking model

– similar to macaque multi-area model in connectiv-
ity and work load

– easily scalable while retaining constant activity lev-
els

– ≈ 130.000 neurons per area
– ≈ 3000 inter- and intra-area connections per neu-

ron, respectively
– average spike rate of 2.5 spike/s

• Jülich Supercomputer JURECA
– 2 areas per compute node
– 2 MPI process per node; 64 threads per MPI Pro-

cess
• communication phase

– synchronization between all compute nodes (only
long-range communication)

– spike data exchange (both short-range and long-
range communication)

Weak-scaling experiment
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A Conventional round-robin neuron distribution with single communication pathway.
B Structure-aware neuron distribution with separate communication pathways for
short- and long-range connections.

• significant speed up of spike communication
• speed of other simulation phases is maintained
• benefit lies in reduced time spent on compute node syn-

chronization
• promising scaling behavior for large number of areas and

compute nodes

Delay dependence
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• delay distr. within an area: N (1.25, 0.625)
• delay distr. between areas: N (5.00, 2.50)
• lower cutoff of inter-area delay distribution defines

inter-node communication frequency in structure-
aware approach

⇒ benefit of implementation increases with decreasing
amount of inter-area communication
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Outlook
• benchmarking of networks with inhomogeneous activity or size
• benchmarking state of the art models (e.g. multi-area model of macaque visual cortex)
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