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Introduction RPA Workflow

Density functional theory (DFT) is a widely used method in electronic structure
theory but struggles at describing non-local correlation effects like dispersion
interaction. The Random Phase Approximation (RPA) can be applied as
perturbative correction to DFT, offering a reliable treatment of electron correlation. RI|-V coefficients
However, the high computational cost of RPA has led to the development of low-

scaling algorithms. Our low-scaling RPA implementation uses the space-time

methodl®! in combination with the separable resolution-of-the-identity (RI) RI-RS coefficients fit
approachl’2l also known as real-space Rl (RI-RS), to reduce the scaling from

O(N%) to O(N?). The key quantity in RPA, the polarizability, is computed on an

optimized real-space grid in imaginary time and efficiently transformed into the Polarizability
imaginary frequency domain. Here, we present our work on GPU offloading for our

low-scaling RPA implementation to reduce the computational pre-factor.
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