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for each atom

    for each point batch

        evaluate_functions_on_points  

        for each basis function

            compute_local_indices

            send indices_to_GPU

            prepare_arrays (CUDA kernels)

            multiply_functions (cublas)

            add_to_resultarray (CUDA kernels)
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Linear least-squares 
estimator:  M = AB−1 = CD (DTD)−1

RI-RS Coefficients Fit

Water cluster (96 atoms) 
144 MPI tasks + 12 GPUs

Matrix multiplications of large 
distributed Matrices:

χ0
PQ(iτ) = ∑

kk′￼

MPk χ0(rk, r′￼k, iτ) Mk′￼,Q

COSMA Library[3]: - Near communication-optimal distributed MM multiplication
- Same API as ScaLAPACK pdgemm
- GPU acceleration
- But higher memory footprint

ScaLAPACK 2D distribution

Polarizability calculation ~ 2x faster when using COSMA instead of ScaLAPACK

Polarizability

Density functional theory (DFT) is a widely used method in electronic structure 
theory but struggles at describing non-local correlation effects like dispersion 
interaction. The Random Phase Approximation (RPA) can be applied as 
perturbative correction to DFT, offering a reliable treatment of electron correlation. 
However, the high computational cost of RPA has led to the development of low-
scaling algorithms. Our low-scaling RPA implementation uses the space-time 
method[5] in combination with the separable resolution-of-the-identity (RI) 
approach[1,2], also known as real-space RI (RI-RS), to reduce the scaling from 
￼  to ￼ . The key quantity in RPA, the polarizability, is computed on an 
optimized real-space grid in imaginary time and efficiently transformed into the 
imaginary frequency domain. Here, we present our work on GPU offloading for our 
low-scaling RPA implementation to reduce the computational pre-factor.
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48 MPI Tasks + 4 GPUs
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