Comparing QCD Thermodynamics in the DWF and HISQ Discretization Schemes

M.E. Jaensch¹, O. Kaczmarek¹, F. Karsch¹, M. Sarkar^{2,3}, R. Shanker⁴, S. Sharma⁴, S. Sharma⁵, T. Ueding¹ ¹Bielefeld University (Presenter), ²National Taiwan University, ³National Yang Ming Chiao Tung University, ⁴The Institute of Mathematical Sciences, ⁵Technische Universität München

INTRODUCTION

- Understanding the chiral transition in the QCD phase diagram with 2 light quark flavors and its impact on strongly interacting matter is a key challenge in QCD thermodynamics.
- \blacktriangleright It is an ongoing effort to determine if the anomalously broken $\mathbb{U}_{A}(1)$ part of chiral symmetry is effectively restored at the same crossover transition temperature, T_c , as the nonsinglet part, and what is the symmetry group near T_c , which defines the universality class of the chiral transition.
- It is important to study chiral symmetry on the lattice using discretizations where the chiral and continuum limits are disentangled.
- The QCD phase transition is mainly studied using staggered fermions.
 - ► These are computationally cheaper than chiral fermion discretizations.

RESULTS

- ▶ Peak location of MDWF $m_s \chi_{disc} / T_{pc}$ defines a pseudo-critical temperature: $T_{\text{pc},N_{\tau}=8} = 158.7^{+2.6}_{-2.3} \text{ MeV}.$
- \blacktriangleright However, they preserve only an remnant $\mathbb{U}(1) \times \mathbb{U}(1)$ part of chiral symmetry on the lattice, introducing additional cutoff effects, socalled taste violations.
- ► Large lattices are required for observables sensitive to the light scalar and pseudo-scalar sectors.
- ► In this work we used the Möbius domain-wall fermions (MDWF) discretization, which preserves chiral symmetry on the lattice to a good extent, to study the thermodynamics of the chiral transition in QCD.
- Observables studied, sensitive to different subgroups of chiral symmetry:
 - Chiral condensate: $\langle \bar{\psi} \psi \rangle_f = \frac{1}{N_{\sigma}^3 N_{\tau}} \langle \operatorname{tr}[M_f^{-1} \partial_{m_f} M_f] \rangle$
 - Subtracted condensate: $\Delta_{ls} = (m_s \langle \bar{\psi}\psi \rangle_{\ell} m_\ell \langle \bar{\psi}\psi \rangle_s)/T^4$
 - χ_{disc} is the disconnected part of the mass derivative of the chiral condensate.
 - Topological susceptibility: $\chi_{top} = \frac{T}{V} \langle Q^2 \rangle$.
- \blacktriangleright $m_{\ell}^2 \chi_{\rm disc} \chi_{\rm top}$ measures breaking of nonsinglet chiral symmetry.
- Esimate $\mathbb{U}_{A}(1)$ breaking from the temperature dependence of χ_{top} .

COMPUTER RESOURCES & ALGORITHMS

- ► This is consistent with continuum extrapolated HISQ and stout results [5].
- Comparison of $\chi_{disc}(T)$ for HISQ $N_{\tau} = 8, 12, 16$ and MDWF $N_{\tau} = 8$
 - ► HISQ continuum estimate $T_{pc}^{HISQ} = 157.4(7) \text{ MeV}.$
 - MDWF results agree well with HISQ continuum estimate even at $N_{\tau} = 8$.
 - ► Highlights importance of using lattice actions with disentangled chiral and continuum limits.

- Left Figure: Computed χ_{top} as the variance of the number of zero modes of the overlap Dirac operator.
 - The χ_{top} deviates from NLO χ PT prediction and at $T > T_{pc}$ approaches $m_{\ell}^2 \chi_{\rm disc} \Rightarrow$ Effective resotarion of nonsinglet chiral symmetry.
- ▶ We use code written by us using the Grid Python Toolkit (GPT) [2], which is based on the Grid [3] library.
- Runs were performed on the JUWELS Booster on single nodes parallelized over 4 GPUs.
- We generated $32^3 \times 8$ lattices with $L_s = 16$ for 7 temperatures.
- \blacktriangleright New optimizations for the HMC algorithm to achieve $\geq 20\%$ faster generation of gauge configurations compared to Ref. [4].
 - ► 6 steps of Hasenbusch mass preconditioning with evenly-spaced ratios, instead of 5 steps as used in [4].
 - ▶ 8 fermion integrator steps, instead of 12 as used in [4], keeping 4 steps for the gauge integrator.
 - ▶ 24% faster generation at $T = 159 \,\mathrm{MeV}$, and over 30% faster generation at higher temperatures, with an acceptance rate of ≥ 0.8 .

- At $T > 160 \,\mathrm{MeV}$ we find the temperature dependence of $\chi_{\mathrm{top}}^{1/4}/T_{\mathrm{pc}}$ to be $(T/T_{\rm pc})^{-\alpha}$ with $\alpha = 2.8(1)$.
- ► $\alpha > 2$ implies a nontrivial $\mathbb{U}_A(1)$ breaking up to T = 186 MeV, which is *not* compatible with a dilute instanton gas approximation (DIGA).
- ▶ The phase transition of (2+1)-favor QCD in the massless limit is likely of 2^{nd} order with $\mathbb{O}(4)$ critical exponents.
- ▶ Right Figure: Compared $\chi_{top}^{1/4}$ on MDWF $N_{\tau} = 8$ against HISQ continuum extrapolated results, obtained using improved clover definition, after performing Symanzik flow.
 - Even on a finite $N_{\tau} = 8$ lattice, the MDWF results are consistent with the continuum extrapolated HISQ results.
 - Chiral symmetry on the lattice plays significant role for topological sampling.
- For the singlet $U_A(1)$ and nonsinglet parts of chiral symmetry are not restored at the same temperature.

REFERENCES

- [1] R.V. Gavai, M.E. Jaensch, O. Kaczmarek, F. Karsch, M. Sarkar, R. Shanker, S. Sharma, S. Sharma, and T. Ueding, Phys. Rev. D 111, 034507 (2025).
- [2] C. Lehner et al., Grid Python Toolkit (GPT)), https://github.com/lehner/gpt (2020).

Figure 1: Generation of gauge configurations with dynamical MDWF for $N_{\sigma} = 32, N_{\tau} = 8$ and $L_s = 16$, using the Grid library on the JUWELS Booster. **Left:** Strong scaling plot. **Right:** Node hours for 5 HMC steps of unit length.

- [3] P. A. Boyle, G. Cossu, A. Yamaguchi, and A. Portelli, Proc. Sci. LAT-TICE2015 (2016) 023.
- [4] Z. Lin, The chiral and $U(1)_A$ symmetries of the QCD phase transition using chiral lattice fermions, Ph.D. thesis, Columbia University, 2014.
- [5] A. Bazavov et al. (HotQCD Collaboration), Phys. Lett. B 795, 15 (2019).

This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Project No. 315477589-TRR 211.

The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for funding this project by providing computing time through the John von Neumann Institute for Computing (NIC) on the GCS Supercomputer JUWELS at Jülich Supercomputing Centre (JSC).