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MOTIVATION
Why strong coupling LOCD on a quantum annealer?

 Lattice gauge theory is the only non-perturbative, gauge-invariant
method to study QCD

The dual representation for staggered fermions with U(3) gauge group [1]
is well suited for quantum computing as it has a discrete state space
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Has been studied classically via the Worm algorithm

Becomes rather expensive at low temperatures aT = X,—t

Dual variables d, m can be mapped on binary vector.

ANNEALING AND THE QUBO FORMALISM

 Quantum annealers are promising to study aspects of LGT [2]
e The array of qubits can be modelled as an Ising spin glass:
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e A transverse field is applied with time-dependent coefficients A(t), B(t)
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QUANTUM SAMPLING

* Our sampling strategy is based on histograms that D-Wave provides
through the QUBO matrix that depend on b

e We compare exact Boltzmann distribution iy, (b) to approximate distri-
butions from D-Wave h,,(b).
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Figure 3: Comparison for 2 X 2 sub-lattices between exact histograms from enumeration
with those generated by D-Wave for p = 1 and p = 2. Left: Comparison of the mul-
tiplicities for 256 different boundaries. Right: Comparison of the weights for a specific
boundary b =(3,3,3,3) for amy = 1.0and v = 0.1,

 We use a hybrid approach, a classical Metropolis-Hastings algorithm fol-
lows the QUBO determination of the histograms:
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 During the annealing process, the target Hamiltonian is minimized wih
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Figure 1: Our choice of annealing profiles. The behavior of A(t) is roughly inversely
proportional to B(t). The x-axis represents time in p-secs.
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respect to a binary vector z, based on a quadratic unconstrained binary
optimization (QUBO) matrix @ [2]:

Q=W + p(AT A + diag(2b" A)).

* We use the Pegasus topology: 5760 qubits

Figure 2: Left: connectivity between qubits of the Pegasus topology, showing a part of
the full 5760 qubits. Right: embedding of sub-lattices in parallel, here shown for a subset
of 4, using automatic embedding [3].

 We construct 2 x 2 building blocks to be sampled in parallel

 The weight matrix W for SC-LQCD is diagonal (with M a monomer term
that is quark-mass dependent term, D, a term for spatial dimers, D, a
term for temporal dimers which is temperature-dependent).

W = dlag(Ma M7M7 MaDsaDsaDtaDt)

e The constraint (A, b) is weighted by a penalty factor p, A is not diagonal,
and the boundary b of each 2 x 2 sub-lattice depends on external dimers
deazt:

3—do),)

ext

3—d)

ext’

3 _ 4%

ext’

b= (3—dY

ext’

* Generalization of the QUBO formalism for SU(3) gauge group [4] and
away from strong coupling limit is feasible

Figure 4: Comparison of the acceptance rate. Left: for a 4 x 4 lattice from Metropolis-
Hastings, for various penalty factors p. Right: Metropolis from classical computation.
Metropolis-Hastings for p = oo reproduces the classical Metropolis acceptance rate.

LARGE VOLUME RESULTS

* On large volumes and low temperatures, D-Wave produces smaller errors
compared to classical Worm simulations
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Figure 5: Chiral condensate as a function of the quark mass am, (left) and ~y (right)
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