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MOTIVATION
Why strong coupling LQCD on a quantum annealer?

• Lattice gauge theory is the only non-perturbative, gauge-invariant
method to study QCD

• The dual representation for staggered fermions with U(3) gauge group [1]
is well suited for quantum computing as it has a discrete state space
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• Has been studied classically via the Worm algorithm

• Becomes rather expensive at low temperatures aT = γ2

Nt

• Dual variables d, m can be mapped on binary vector.

ANNEALING AND THE QUBO FORMALISM
• Quantum annealers are promising to study aspects of LGT [2]
• The array of qubits can be modelled as an Ising spin glass:
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• A transverse field is applied with time-dependent coefficients A(t), B(t)

H(s) = −A(t)
∑
i

σi
x +B(t)HIsing .
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Figure 1: Our choice of annealing profiles. The behavior of A(t) is roughly inversely
proportional to B(t). The x-axis represents time in µ-secs.

• During the annealing process, the target Hamiltonian is minimized wih
respect to a binary vector x, based on a quadratic unconstrained binary
optimization (QUBO) matrix Q [2]:

χ2 = xTQx , Q = W + p(ATA+ diag(2bTA)).

• We use the Pegasus topology: 5760 qubits

Figure 2: Left: connectivity between qubits of the Pegasus topology, showing a part of
the full 5760 qubits. Right: embedding of sub-lattices in parallel, here shown for a subset
of 4, using automatic embedding [3].

• We construct 2× 2 building blocks to be sampled in parallel
• The weight matrix W for SC-LQCD is diagonal (with M a monomer term

that is quark-mass dependent term, Ds a term for spatial dimers, Dt a
term for temporal dimers which is temperature-dependent).

W = diag(M,M,M,M,Ds, Ds, Dt, Dt)

• The constraint (A, b) is weighted by a penalty factor p, A is not diagonal,
and the boundary b of each 2 × 2 sub-lattice depends on external dimers
dext:
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• Generalization of the QUBO formalism for SU(3) gauge group [4] and
away from strong coupling limit is feasible

QUANTUM SAMPLING
• Our sampling strategy is based on histograms that D-Wave provides

through the QUBO matrix that depend on b

• We compare exact Boltzmann distribution htrue(b) to approximate distri-
butions from D-Wave hp(b).
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Figure 3: Comparison for 2× 2 sub-lattices between exact histograms from enumeration
with those generated by D-Wave for p = 1 and p = 2. Left: Comparison of the mul-
tiplicities for 256 different boundaries. Right: Comparison of the weights for a specific
boundary b =(3,3,3,3) for amq = 1.0 and γ = 0.1,

• We use a hybrid approach, a classical Metropolis-Hastings algorithm fol-
lows the QUBO determination of the histograms:

Paccept = e−Snew+Sold
hold

hnew
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Figure 4: Comparison of the acceptance rate. Left: for a 4 × 4 lattice from Metropolis-
Hastings, for various penalty factors p. Right: Metropolis from classical computation.
Metropolis-Hastings for p = ∞ reproduces the classical Metropolis acceptance rate.

LARGE VOLUME RESULTS
• On large volumes and low temperatures, D-Wave produces smaller errors

compared to classical Worm simulations
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Figure 5: Chiral condensate as a function of the quark mass amq (left) and γ (right)
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