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Minimally doubled fermion actions offer a discretization for two-flavor Quantum Chromodynamics without rooting, but
retaining a U(1) chiral symmetry at the same time. The price to pay is a breaking of the hypercubic symmetry, which
requires the inclusion and tuning of new counterterms. Similar to staggered quarks, these actions suffer from taste breaking.
We perform a mixed action numerical study with the Karsten-Wilczek formulation of minimally doubled fermions on 4-stout
staggered configurations, generated with physical quark masses, covering a broad range of lattice spacings. We consider
a tree-level spatial Naik improvement to mitigate discretization errors. We carry out a non-perturbative tuning of the KW
action with and without improvement, and investigate the taste breaking and the approach to the continuum limit.
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Introduction
The tree-level Karsten-Wilczek action is given by [1, 2]:

SKWF = SNF +
∑
x

ψ̄(x)iζ
2
γ0

3∑
j=1

(
2ψ(x)− Uj(x)ψ(x + ĵ)− U †j (x− ĵ)ψ(x− ĵ)

)
︸ ︷︷ ︸

∼ψ̄γ043dψ

,

where SNF is the naive fermion action

SNF =
∑
x

3∑
µ=0

ψ̄(x)γµ
1
2
[
Uµ(x)ψ(x + µ̂)− U+

µ (x− µ̂)ψ(x− µ̂)
]

+m
∑
x

ψ̄(x)ψ(x)

and Uµ(x) are the links in diretion µ at lattice site x. ζ is called the Karsten-Wilczek
parameter, with 4ζ2 > 1. The so-called Karsten-Wilczek term is similar to a Wilson
term, except it is only applied in three of the directions and has a γ0 matrix in front.
Features:
• D is not Hermitian while D†D and γ5D are Hermitian
• D† = −D (if µq is imaginary)
• Dγ5 = −γ5D

Doublers: p = (0, 0, 0, 0) and p = (π/a, 0, 0, 0). P1

P2

P0

u

d ✘

✘✘

✘

✘

✘

Tree level improvement
We improve the 3D Nabla operator (3-hop term):

∇NAIKΨ = i

a

[
9
8

sin akj −
1
24

sin 3akj
]

Ψ(k) = i
[
kj + 0 · k3

j +O(k5)
]

Ψ

We improve the 3D Laplacian (3-hop term):
a

2
k2Ψ → a3

2
k4Ψ

4̃3DΨ =
[

9
8
(1− cos akj)−

1
8
(1− cos 3akj)

]
Ψ =

[
0 · k2 + 3

8
k4 +O(k6)

]
Ψ
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Naik staggered

• Error on the thermodynamic
pressure is strongly reduced
• No O(a) error in the vacuum
polarization up to one loop.
• No logarithmic divergence in
the self energy up to one loop.
• Noise reduction in C-even
quantities (e.g. fπ)

Renormalization
The Karsten-Wilczek action breaks standard lattice symmetries:
• Space and time directions are discretized differently → anisotropy
• Time reversal and charge conjugation symmetry are broken, but not their product.

The renormalization of the Karsten-Wilczek action requires the inclusion of two new
fermionic counterterms (of dimensions 3 and 4) and one gluonic counterterm (of
dimension 4). These are:

S3f = c
∑
x

ψ̄(x)iγ0ψ(x),

S4f = (ξ0 − 1)
∑
x

ψ̄(x)1
2
γ0
(
U0(x)ψ(x + 0̂)− U †0 (x− 0̂)ψ(x− 0̂))

)
,

S4g = (ξg − 1)
∑
x

∑
µ 6=0

Re Tr (1− Pµ0(x)) ,

where Pj0(x) are the temporal plaquettes at lattice site x.
The counterterms are known in one-loop lattice perturbation theory [3, 4].
The unimproved Karsten-Wilczek action introduces O(a) errors. These are

– odd in the power of ζ (but ζ = ±1 are both valid choices)
– odd in time reversal
– odd in charge conjugation

Taste breakring
There are four channels in the pseudoscalar propagator [5].
• There is a pseudo-Goldstone propagator, similar to staggered fermions.
• The γ0 channel is related to the C or T symmetry beraking.
It follows an apparent O(a3) scaling, and is reduced by improvement.
• Two heavier tastes are staggered-like, a result of a temporal UV gluon exchange.
The corresponding masses are reduced through anisotropy (here ξR = 2).
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We show the mass squared relative to the pseudo-Goldstone mass M5.
Left: Isotropic unimproved vs Isotropic tree level improved
Right: Anisotropic tree level improved vs Isotropic tree level improved

Non-perturbative tuning of the couterterms
We work with isotropic and anisotropic staggered dynamical configuraitons [6].
The pseudoscalar propagator in the γ0 channel exhibits a beat [4]

C(n) ≈ A cosh(M(n−Nt/2)) cos(ωcn− φ)

if the dimension-3 counterterm c is mistuned. Tuning condition: ωc
!= 0.
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Continuum extrapolation of fπ
fπ is calculated from the amplitude of the
point-source γ5 propagator.
Continuum scaling is compared [6]:
1) staggered
2) unimproved Krasten-Wilczek
3) tree-level improved Krasten-Wilczek
O(a2) continuum scaling is observed. 0.000 0.005 0.010 0.015 0.020 0.025
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fKW = 168.30(85) MeV
fKW+Naik = 167.75(24) MeV
fsta = 168.46(24) MeV
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