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Abstract
Computations on state-of-the-art supercomput-
ers like the JUWELS Cluster module enables
us to study fundamental building blocks of our
universe. The allocation was used for our ef-
fort on non-perturbative renormalization, an in-
tegral part of our precision study of hadronic
structure using lattice QCD.
We simulated various ensembles with four de-
generate quarks (Nf=4) at six different lattice
spacings and multiple values of the quark mass.
The renormalization factors are needed to ob-
tain continuum quantities important in hadron
structure, including: i) nucleon charges and mo-
ments of nucleon Parton Distribution Functions
[1, 2], ii) the gluon momentum fraction renor-
malized non-perturbatively [3, 4], and iii) nu-
cleon form factors [5].

Nf=4 ensembles
Our renormalization program uses the RI′MOM

scheme [6, 7]. Nf=4 ensembles were generated
using JUWELS at the same values of the cou-
pling β as used for the ETMC Nf=2+1+1 en-
sembles. Multiple values of the quark masses
µi are used to extrapolate the renormalization
factors to the chiral limit. The target is to solve

⟨O⟩ = 1

Z

∫
D[U ]O(U)e−βSg(U)

N f=4∏

i

detD(U, µi)

which is done in two steps i) ensemble genera-
tion via Markov Chain Monte Carlo simulations
and ii) calculations of observables, i.e. correla-
tion and vertex functions, matrix elements etc..
The most computational effort is required for
solving ∼ O(106) linear equations D(U, µ)x = b.
The operator D(U, µ) is a next-neighbor stencil
of dimension V = 12·2L4 with L = [24, . . . , 128].
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Fig. 1: Generated Nf=4 ensembles at different lat-
tice spacings and pion masses.
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Renormalization
We have calculated nonperturbative renormalization factors for the flavor singlet and non-singlet
quark bilinear operators [8], and the gluon and quark energy-momentum tensor (EMT) [9]. Our
results have been applied in the determination of the quark and gluon momentum fraction in the
pion and kaon and the calculation of nucleon charges.
Strategy: The RI′/MOM formula for determining the renormalization factor ZRI′

O of a quark bilinear
operator O is: (ZRI′

q )
−1

ZRI′

O
1
12Tr[ΛO(p)(Λ

tree
O (p))−1]|p2=µ2

0
= 1, where ΛO is the amputated vertex

function of O with external quark fields and ZRI′

q is the renormalization factor of the quark field.
A similar condition is set for gluon operators. The calculation of the vertex functions have been
performed using the momentum source approach, and the one-end trick for disconnected quark
loops. Our strategy contains chiral extrapolations with four quark masses, subtractions of lattice
artifacts calculated in one-loop lattice perturbation theory, perturbative conversion to MS scheme at
2 GeV, and momentum extrapolations to eliminate residual dependence on the scale µ0.
Results: We show in Fig. 2 some selected results of our computation. We stress that due to the
presence of large gauge noise, high statistics of O(10, 000) are required for the calculation of gluon
vertex functions.
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Fig. 2: The renormalization factor of the vector (left) and the gluon EMT operator (right) as a
function of p2 = µ2

0, for different ensembles.

Quark and gluon momentum fraction in the pion and kaon
The renormalization factors enabled us to calculate the first complete momentum decomposition for
both the pion and the kaon. This was done in terms of their quark and gluon constituents, performed
within lattice QCD at the physical point [9] on three ensembles with Nf=2+1+1 extracting from
matrix elements of the EMT via ratios of 3- and 2-point functions.

0.5

0.6

0.7

0.8

〈x
〉π q,

R

0.575(79)

〈x
〉K q,

R

0.683(50)

0.3

0.4

0.5

0.6

0.7

〈x
〉π g,

R

0.402(53)

〈x
〉K g,

R

0.422(67)

0.001 0.003 0.005

a2[fm2]

0.6

0.8

1.0

1.2

1.4

〈x
〉π g,

R
+
〈x
〉π q,

R

0.984(89)

0.001 0.003 0.005

a2[fm2]

〈x
〉K g,

R
+
〈x
〉K q,

R

1.13(11)

cB211.072.64 cC211.060.80 cD211.054.96

Fig. 3: Continnum limit extrapolation are showing
on the right panel for the pion (left part) and the kaon
(right part). We present our results for the total quark
and gluon contributions, as well as the momentum sum
rule.
We found that the total momentum fraction carried
by quarks is 0.575(79) and 0.683(50) and by gluons
0.402(53) and 0.422(67) in the pion and in the kaon,
respectively, in the MS at 2 GeV.
Our results for ⟨x⟩π,Kg,R indicate a similar momentum
fraction carried by gluons in the kaon and the pion,
while ⟨x⟩q,R tends to be smaller in the pion.

We found that the momentum sum is 0.984(89) for the pion and 1.13(11) for the kaon. This is the
first decomposition into quark and gluon parts available of ⟨x⟩K using a first-principles calculation.
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Fig. 4: The left panel shows
comparison of our results with other
available data, for the pion (upper
panels) and kaon gluon and quark
fractions (lower panels). The right
panel shows the quark and gluon mo-
mentum fractions for the pion (up-
per panel) and kaon (lower panel) ob-
tained in the continuum. Inner bars
represent only the connected contri-
butions, while the outer bars show
the total, including disconnected con-
tributions.

With the computational capacity of the next generation of supercomputers, such as JUPITER
will deliver, more complicated renormalization of higher moments of PDFs can be addressed by
enhancing statistical outcomes. We also plan to extend the calculations to finer lattices. This
will further deepening our understanding of the building blocks of our universe, the structure of
hadrons.


