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Introduction

Precision calculations of hadronic masses in LQCD have important applications, f.e.:

1. The mass of the Ω−-baryon is known up to high precision (M
phys.
Ω− = 1672.45(29)MeV)

from experiments. A high-precision lattice computation of aMΩ− can therefore be
used to determine the lattice spacing a. Due to contamination of the lattice
correlator with excited states it is not a simple task to extract the ground state
energy.

2. The vector (ρ-meson) correlator is the fundamental observable to determine the
hadronic contributions to g− 2 [1, 2]. For long distances the signal-to-noise noise
ration worsens exponentially. The task is to extract the contributing modes at
shorter distances to reconstruct the long-distance contributions.

Both of these applications can be achieved through an application of the Generalized
Eigenvalue Problem (GEVP).

Generalized Eigenvalue Problems

The correlation function of an operator (Ôn)

〈Ôn
†
(t)Ôn(0)〉 can be decomposed as a sum

of different exponential modes (Equation
2). By constructing the correlation matrix
(Equation 1) one can solve the General-
ized Eigenvalue Problem (GEVP) (Equation
3) and solve for the different exponential
modes (Equation 4).

Cjk(t) = 〈Ôj
†
(t)Ôk(0)〉 (1)

Cjk(t) =
∑
i

a
jk
i
exp (−mit) (2)

C(t)vi = λi(t, t0)C(t0)vi (3)

λi(t, t0) = exp(−mi(t − t0)) (4)

High-precision computation of the Ω− bayron mass
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(5)

We use a six-dimensional GEVP, that includes point and smeared
sources (p and s) and different time shifts given in subscripts
(Equation 5). The point sources have an additional shift tp.
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Figure 1. Effective mass Meff(t) =
1
∆t log

λ(t,t0)
λ(t+∆t,t0)

plateaus from

the GEVP in Equation 5. Figure is taken from [2].

The GEVP with the correlation matrix from Equation 5 is
solved to extract six different states. The effective en-
ergies of these states are shown in Figure 1. We choose
the fit ranges [0.9 fm,2.0 fm] and [1.0 fm,2.0 fm] accord-
ing to the method in Figure 2. The final masses for most
of our ensembles are shown in Figure 3.
With this high-precision computation we are able to im-
prove our scale setting value of [1]

wold
0 = 0.17236[70] fm (6)

to the much more precise value [2]

wnew
0 = 0.17245[51] fm. (7)
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Figure 2. We estimated the optimal range to fit the
correlator by measuring the Q-value [3] for each range
and ensemble and performing KS-tests along the
ensembles. Large P-values correspond to good fit
qualities. Figure is taken from [2].
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Figure 3. Distribution of the Ω− baryon masses around
their mean value on different ensembles. The six
numbers per ensembles are associated with three
operators and two fit ranges. Figure is taken from [2].

Tail reconstruction of the vector meson
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Construction of two-pion states with the same quantum numbers
as the ρ-meson (except for the energy):

C0(t) = 〈ρ̂†(t)ρ̂(0)〉 (8)

Ci(t) =
∑
j

G
ij
ρππ × 〈(̂ππ)

†
j
(t)(̂ππ)j(0)〉 (9)

The indices j of the two-pion correlators correspond to
taste/momentum-choices. The computation of the coefficients in
Equation 9 can be found in [4].
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Figure 4. The eigenvalues λ(t, t0) shown as a function of t. Due
to periodic boundary conditions there are also back-propagating
contributions. Figure is taken from [5].
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Figure 5. Effective energies which corresponds to the
slope of the data in Figure 5. Figure is taken from [5].
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Figure 6. Plateaus for the prefactor a00
i

from
Equation 2. The states that do not display a clear
plateau (e.g. orange) correspond to E > mρ and are
heavily suppressed for the tail reconstruction. Figure is
taken from [5].
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Figure 7. Reconstruction of the first moment compared
to the direct simulation. Since states with E > mρ are
left out, the reconstruction is incomplete at small t,
however at large t these contributions are suppressed
and the reconstruction converges to the true value and
the reconstruction is much more precise. Figure is
taken from [5].
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