Advanced hadron spectroscopy in lattice QCD
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Introduction

Generalized Eigenvalue Problems

Precision calculations of hadronic masses in LQCD have important applications, f.e.:

1. The mass of the QO -baryon is known up to high precision (Mg’ZYS- — 1672.45(29) MeV)
from experiments. A high-precision lattice computation of aM,,- can therefore be
used to determine the lattice spacing a. Due to contamination of the lattice
correlator with excited states it is not a simple task to extract the ground state
energy.

2. The vector (p-meson) correlator is the fundamental observable to determine the
hadronic contributions to g — 2 [1, 2]. For long distances the signal-to-noise noise
ration worsens exponentially. The task is to extract the contributing modes at
shorter distances to reconstruct the long-distance contributions.

The correlation function of an operator (ON)

(O”T(t)f)”(O)) can be decomposed as a sum
of different exponential modes (Equation
2). By constructing the correlation matrix
(Equation 1) one can solve the General-
ized Eigenvalue Problem (GEVP) (Equation
3) and solve for the different exponential
modes (Equation 4).

Both of these applications can be achieved through an application of the Generalized

Eigenvalue Problem (GEVP).
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High-precision computation of the (2~ bayron mass

The GEVP with the correlation matrix from Equation 5 is
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We use a six-dimensional GEVP, that includes point and smeared
sources (p and s) and different time shifts given in subscripts
(Equation 5). The point sources have an additional shift tp.
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Figure 1. Effective mass Mgg(t) = A5 log NErAtE;) Plateaus from
the GEVP in Equation 5. Figure is taken from [2].

Tall reconstruction of the vector meson
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Figure 7. Reconstruction of the first moment compared
to the direct simulation. Since states with E > m, are
left out, the reconstruction is incomplete at small t,
however at large t these contributions are suppressed

Figure 5. Effective energies which corresponds to the

The indices j of the two-pion correlators correspond to slope of the data in Figure 5. Figure is taken from [5].

taste/momentum-choices. The computation of the coefficients in
Equation 9 can be found in [4].
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oo l . I and the reconstruction converges to the true value and
107 - S *e I - the reconstruction is much more precise. Figure is
cvf.2.8281.¢ ¢ taken from [5].
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Figure 6. Plateaus for the prefactor aP® from

Equation 2. The states that do not display a clear
plateau (e.g. orange) correspond to E > m, and are
heavily suppressed for the tail reconstruction. Figure is
taken from [5].

Figure 4. The eigenvalues A(t, ty) shown as a function of t. Due
to periodic boundary conditions there are also back-propagating

contributions. Figure is taken from [5]. [5] Frech et al., "Reconstruction of the vector meson

propagator using a generalized eigenvalue
problem”



