Nucleon structure from lattice QCD

Jeremy R. Green, in collaboration with Michael Engelhardt, Stefan Meinel, Stefan Krieg, John Negele, Andrew Pochinsky, Marcel Rodekamp, and Sergey Syritsyn

Quark substructure of the proton

In a proton moving in the *z* direction:

Quark parton distribution functions (PDFs) describe the distribution of quarks and antiquarks with respect to longitudinal momentum fraction *x*:

 $q(x), \bar{q}(x)$ unpolarized, helicity (longitudinally polarized), $\Delta q(x), \Delta \bar{q}(x)$ $\delta q(\mathbf{x}), \delta \bar{q}(\mathbf{x})$ transversity.

Electromagnetic form factors $F_1(Q^2)$ and $F_2(Q^2)$ [or $G_E(Q^2)$ and $G_M(Q^2)$] describe the distribution of

Second Mellin moment

Simplest way to study PDFs on the lattice is via their lowest Mellin moments: e.g. the second moments

$$\langle x \rangle_{q^{+}} \equiv \int_{0}^{1} x [q(x) + \bar{q}(x)] dx, \langle x \rangle_{\Delta q^{-}} \equiv \int_{0}^{1} x [\Delta q(x) - \Delta \bar{q}(x)] dx, \langle x \rangle_{\delta q^{+}} \equiv \int_{0}^{1} x [\delta q(x) + \delta \bar{q}(x)] dx.$$

Obtained from forward matrix elements of twist-two operators: e.g.

 $\langle N(p)|\bar{q}\gamma_{\{\mu}D_{\nu\}}q|N(p)\rangle = \langle x\rangle_{q^{+}}\bar{u}_{N}(p)\gamma_{\{\mu}ip_{\nu\}}u_{N}(p),$

where {} denote the symmetric traceless part. Varying p, μ, ν , we get different matrix elements with nonzero kinematic factor.

quarks minus antiquarks with respect to transverse position r_{\perp} . In the unpolarized case:

$\rho(r_{\perp}) = \int \frac{d^2q}{(2\pi)^2} e^{iq \cdot r_{\perp}} F_1(q^2).$

A. V. Belitsky and A. V. Radyushkin, Phys. Rept. 418 (2005) [hep-ph/0504030]

Nonperturbative renormalization

Rome-Southampton method: 1. Z_V from hadronic scheme (already computed). 2. $Z_O(\mu)/Z_V$ using RI'-MOM and **RI-SMOM** schemes, converted to \overline{MS} using perturbation

Proceed in three steps using

- theory. Need to fit at high μ^2 .
- 3. O(4)-breaking $Z_{O'}/Z_O$ for two different hypercubic irreps. No perturbation theory needed; can use small μ^2 .
- Further control systematics via different kinematics: "4D" ~ $\frac{1}{2}(p, p, p, p)$ and "2D" ~ $\frac{1}{\sqrt{2}}(p, p, 0, 0)$.

M. Rodekamp, M. Engelhardt, JRG, S. Krieg et al., Phys. Rev. D 109, 074508 (2024) [2401.05360]

Q² (GeV²) Q² V. Punjabi *et al.*, Eur. Phys. J. A **51**, 79 (2015) [1503.01452]

Reaching high momentum on the lattice

High-momentum nucleons are challenging for two reasons:

- 1. worse signal-to-noise ratio ~ $\exp(-[E_N(p) \frac{3}{2}m_{\pi}]t)$,
- 2. smaller energy gap $\Delta E(p) \equiv E_{\text{excited}}(p) E_N(p)$.

We make this more manageable via

- Breit-frame kinematics $\vec{p}' = -\vec{p}$ to minimize $|\vec{p}|$ for a given Q^2 ,
- momentum smearing to optimize nucleon operator at the chosen \vec{p} . G. S. Bali, B. Lang, B. U. Musch, A. Schäfer, Phys. Rev. D 93, 094515 (2016) [1602.05525]

Contribution from connected diagrams to proton and neutron F_1 and F_2 .

- ► Reasonable signal up to $Q^2 \approx 8 \text{ GeV}^2$!
- Removing excited states is a challenge. Here: two-state fit.
- Discretization effects may also be substantial.

Disconnected diagrams also computed: consistent with zero and $\leq 20\%$ of connected. S. Syritsyn @ Lattice 2024

• $\bar{R}(T,\tau)|_{\rho_x=0}$ \Box $\bar{R}(T,\tau)|_{\rho_x\neq 0}$

Some choices of operator with nonzero momentum have less excited-state contamination. Calculate at physical pion mass with two lattice spacings. Weight many different analyses to get final results: $\langle x \rangle_{u^+ - d^+} = 0.200(17), \quad \langle x \rangle_{\Delta u^- - \Delta d^-} = 0.213(16), \quad \langle x \rangle_{\Delta u^- - \Delta d^-} = 0.219(21).$

M. Rodekamp, M. Engelhardt, JRG, S. Krieg et al., Phys. Rev. D 109, 074508 (2024) [2401.05360]

Next step: third and fourth moments

Twist-two operators with two or three derivatives are more strongly affected by lattice symmetry breaking $O(4) \rightarrow H_4$. Need to choose components $\mu_1 \dots \mu_n$ more carefully. Nonzero momentum needed to get nonzero kinematic factor.