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My own (paper) history with Kurt Binder
List of joint research papers (except proceedings)
• Modelling order-disorder and magnetic transitions in iron-aluminium alloys

F. Schmid, K. Binder, J. Phys.: Cond. Matter 4, 3569 (1992).
• Monte Carlo investigation of interface roughening in a bcc-based binary alloy

F. Schmid, K. Binder, Phys. Rev. B 46, 13565 (1992).
• Diblock copolymers at a homopolymer-homopolymer - interface: A Monte Carlo simulation

A. Werner, F. Schmid, K. Binder, M. Müller, Macromolecules 29, 8241 (1996).
• Anomalous size-dependence of interfacial profiles between coexisting phases of polymer 

mixtures in thin film geometry: A Monte-Carlo simulation
A. Werner, F. Schmid, M. Müller, and K. Binder, J. Chem. Phys. 107, 8175 (1997).

• Effect of long range forces on the interfacial profiles in thin binary polymer films
A. Werner, M. Müller, F. Schmid, K. Binder, J. Chem. Phys. 110, 1221 (1999).

• Intrinsic profiles and capillary waves at homopolymer interfaces: A Monte Carlo study
A. Werner, F. Schmid, M. Müller, K. Binder, Phys. Rev. E 59, 728 (1999).

• Interfacial profiles between coexisting phases in thin films: Cahn Hilliard treatment versus capillary waves
K. Binder, M. Müller, F. Schmid, A. Werner, J. Stat. Phys. 95, 1045 (1999).

• Surface induced disorder in body-centered cubic alloys
F.F. Haas, F. Schmid, K. Binder, Phys. Rev. B. 61, 15077 (2000).

• Critical behavior of active Brownian particles
J.T. Siebert, F. Dittrich, F. Schmid, K. Binder, T. Speck, P. Virnau, Phys. Rev. E 98, 03061(R) (2018).

Mostly on Interfaces

Strong Focus on 
Statistical Physics
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Tubular membrane structures in cells
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Hanson, Sattarzadeh
Plant Physiol. 2011;155:1486-1492

Plastides and stromulaeEndoplasmatic reticulum



Tubular structures – Stabilization?

● Curvature active membrane proteins
(z.B. Machettira … Schleiff
Frontiers Plant Science 2012)

● “Protein crowding”
(Stachowiak et al, Nature Cell Biol. 2012)

● Interactions with membranes 
of other organelles 

(Schattat et al, Plant Physiology 2011)

● Active mechanism, 
mechanic force due to cytoplasm

(Kwok, Hanson, Plant Journal 2003)



Question: 

Is there anything we can learn
from simple models?



Characteristic length scales in membranes
Example: Membrane tubulation due to BAR-proteins
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Minimal model of membrane shapes

Ø Elastic “Helfrich” Energy (simplest variant)

Ø Elastic parameters  𝜅, 𝜅! , 𝑐" depend on membrane
Ø Simulation: Triangulated membrane model

K    = 1/R1 + 1/R2 : Total curvature
KG = 1/(R1R2) : Gaussian curvature

d=5-10 nm
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(Noguchi, Gompper, Phys. Rev. E 2005)



… that are reproduced by generic continuum models

Þ Goal: See how much such models can tell us
about tubular membrane structures

Hiroshi Noguchi et al
(2015)

Variety of membrane shapes …



Example 1: Force free vesicle
Fixed enclosed volume



Example 2: Force applied at one end
Fixed enclosed volume



Numerical validation
For special symmetries, the Helfrich energy

can be minimized semi-analytically

Tube radius vs. force
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Interaction between tubes

Initial Reduce angle Reduce angle further



Tube interactions: Onset of coalescence
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Tubes and Branches

Simplification: No attached vesicle
Enclosed volume not fixed

®Focus on tubes 
®and, possibly, junctions
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Tube radius

Tube radius Tube length

® Comparable for linear and branched structures



Question 1: Angles at branch points ?
Observation: Only one possible stable angle: 120o
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Comparison with experimental networks

Dr. John Runions/
Science Photo Library

Endoplasmatic reticulum

Reconstituted network

Powers, Wang, Liu, Rapoport 
Nature 543, 257 (2017)

Experiments: All angles
close to 120o   Ö



Comparison with experimental networks

Lobovkina et al, Eur. Phys. J. E 254, 74 (2008).

Time evolution of a liposome network

Junctions move around, until all branch points reach 120o



2) Energy penalty for creating a branch
Analysis

Cap/branch energy:
Energy difference between 
caps / branches and straight tubes 
with same membrane area 



2) Energy penalty for creating a branch

Þ Caps cost energy 
But: Junctions are favorable!

Þ Net effect: No penalty!
Even the energy of 
Junction + cap is negative!



3) Are tubular structures stable?
Bahrami et al: Tubes can be stabilized without applying a force
by fixing enclosed volume (Bahrami, Hummer, ACS Nano 11, 9558, 2017)

Our results:  



3) Are tubular structures stable?

Tube lengthThick tube Thin tube

Our results:  

Bahrami et al: Tubes can be stabilized without applying a force
by fixing enclosed volume (Bahrami, Hummer, ACS Nano 11, 9558, 2017)



3) Are tubular structures stable?
Bahrami et al: Tubes can be stabilized without applying force
by fixing enclosed volume

Our results: 

Thin tubes turn into 
double-wall vesicles
after a long time  
(activated process)

Thicker tubes 
remain metastable

(Bahrami, Hummer, ACS Nano 11, 9558, 2017)



3) Are tubular structures stable?
Bahrami et al: Tubes can be stabilized without applying force
by fixing enclosed volume

Our results: 

Thin tubes turn into 
double-wall vesicles
after a long time  
(activated process)

Thicker tubes 
remain metastable

Reduced volume

(Bahrami, Hummer, ACS Nano 11, 9558, 2017)



3) Are tubular structures stable?
All branched structures transform immediately
into double-walled vesicles

Spontaneous
transition,

no activation 
barrier



3) Are tubular structures stable?

Tube radius Tube lengthTube lengthThick tubes Thin tubes



3b) Can tubular structures be stabilized?
Next attempt: Additionally fix mean curvature 
(“area difference” Da  between inner and outer leaflet)  

Þ Both tubes and branches can be stabilized



Stable structures at fixed mean curvature (fixed Da)

Þ Both tubes and branches, thick and thin, are stabilized !

3) Can tubular structures be stabilized?



4) How about energy costs of branches ?

Recall force-driven structure:
⇒ Energy for creating

a branch was negative!

Force free structure at
fixed mean curvature Da
⇒ Adding a junction has

to be compensated 
by tube thinning

Δ𝐸01 ≈ 𝜋𝜅 + 𝛼 Δ𝐸2345#6&4 > 0

⇒ Net energy cost is positive!



4) How about energy costs of branches ?

Recall force-driven structure:
⇒ Energy for creating

a branch was negative!

Force free structure at
fixed mean curvature Da
⇒ Adding a junction has

to be compensated 
by tube thinning

Δ𝐸01 ≈ 𝜋𝜅 + 𝛼 Δ𝐸2345#6&4 > 0

⇒ Net energy cost is positive!

⇒ Global effect!
Core energy of junction
defect is negative! 



5) Do stable four-fold junctions exist?

Tube length

ÞOnly tetrahedral junctions
are stable.

Þ All others break up
into two threefold junctions

Force-driven structures:



Tube radius Tube length

5) Do stable four-fold junctions exist?

Þ In the absence of force, four-fold junctions
break up into two three-fold junctions

Force-free structure with fixed Da



Summary  

Linear and branched structures can be stabilized in generic 
membrane models by imposing a few very simple 
constraints.  

Simulations of generic models can give insights

Ø … why three-fold junctions with angle 180 degrees 
dominate.

Ø … why branched structures are abundant in nature: 
Junctions are locally stable. Eliminating them is only 
favorable if the entire tube network rearranges

(M. Jung, G. Jung, FS, Phys. Rev. Lett. 130, 148401, 2023)
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Goal: Simulation of “self-avoiding” membrane models that are
directly based on an elastic model for membranes

Example: Helfrich model (total curvature term only)

Realization: Triangulated membrane

Bond length  
Þ „Self-avoiding” sheets

Membranes cannot cross
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Simulation of elastic membranes I



Simulation of elastic membranes II
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