Simulation of condensed matter

Session in memory of Prof. Kurt Binder

My own (paper) history with Kurt Binder

List of joint research papers (except proceedings)

- Modelling order-disorder and magnetic transitions in iron-aluminium alloys
 F. Schmid, K. Binder, J. Phys.: Cond. Matter 4, 3569 (1992).
- Monte Carlo investigation of interface roughening in a bcc-based binary alloy
 F. Schmid, K. Binder, Phys. Rev. B 46, 13565 (1992).
- F. Schmid, K. Binder, Phys. Rev. B 46, 13565 11997 erfaces

 Diblock copolymers Mostly on Interfaces arlo simulation

 A. Werner, F. Schmid, K. Binder, M. Müller, Macromolecules 29, 8241 (1996) periodic b.c.
- Anomalo[®] s size-depende partial wetting i Complete wetting files between coe sting periodis mixture o in thin the story man and the straight of the straig
- A. Werner, M. Miller, F. Schmid, M. Bin Yr. J. Chem. Phys. 10, 1221 (1999). fluctuating "coarse-grained"

 Intrinsic profiles and capillary waves at homopolymer interfaces: A Monte Carlo study

 A. Werner, F. Schmid, M. Müller, K. Binder, Phys. Rev. E 59, 728 (1999).
- Interfacial profiles between **Strong** Focusal on and treatment versus capillary waves K. Binder, M. Müller, F. Schmid, A. Werney, Stat. Phys. 95, 1045 (1999).
- Surface induced dis Statistica Physics
 F.F. Haas, F. Schmid Statistica Physics
- Critical behavior of active Brownian particles
 J.T. Siebert, F. Dittrich, F. Schmid, K. Binder, T. Speck, P. Virnau, Phys. Rev. E 98, 03061(R) (2018).

Simulation of condensed matter

Session in memory of Prof. Kurt Binder

Simulation of condensed matter

Session in memory of Prof. Kurt Binder

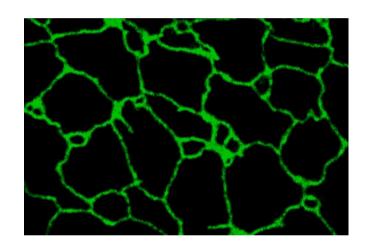
Simulations of branched tubular membrane structures

Friederike Schmid, Universität Mainz Maike Jung, Gerhard Jung



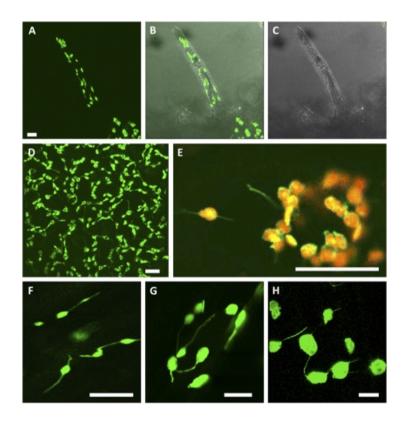
Tubular membrane structures in cells

Endoplasmatic reticulum



Dr. John Runions/Science Photo Library

Plastides and stromulae

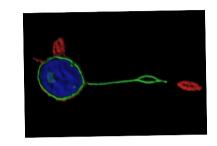


Hanson, Sattarzadeh Plant Physiol. 2011;155:1486-1492

Tubular structures - Stabilization?

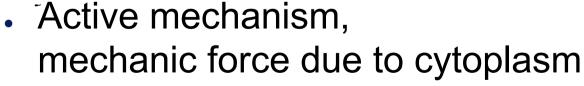
Curvature active membrane proteins

(z.B. Machettira ... Schleiff Frontiers Plant Science 2012)

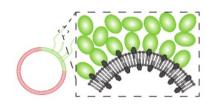


- "Protein crowding" (Stachowiak et al, Nature Cell Biol. 2012)
- Interactions with membranes of other organelles

(Schattat et al, Plant Physiology 2011)



(Kwok, Hanson, Plant Journal 2003)

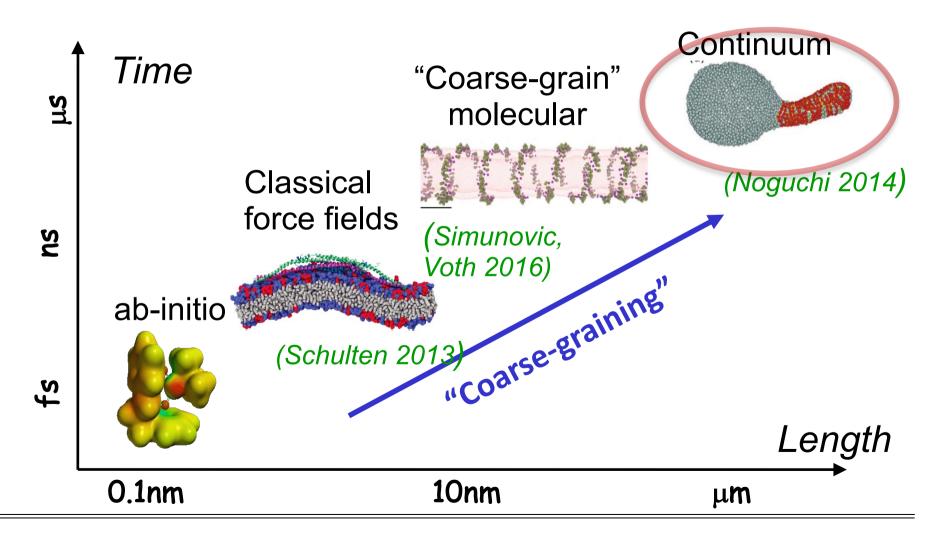


Question:

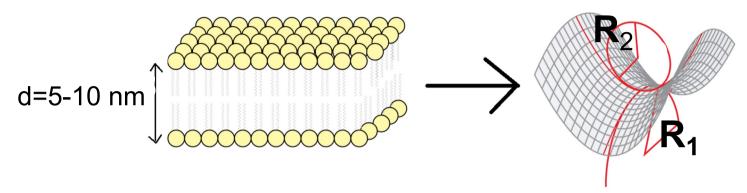
Is there anything we can learn from simple models?

Characteristic length scales in membranes

Example: Membrane tubulation due to BAR-proteins



Minimal model of membrane shapes



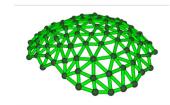
Elastic "Helfrich" Energy (simplest variant)

$$F = \int d\mathbf{A} \left\{ \frac{\kappa}{2} (K - K_0)^2 + \kappa_G K_G \right\}$$

$$K = 1/R_1 + 1/R_2 : \text{Total curvature}$$

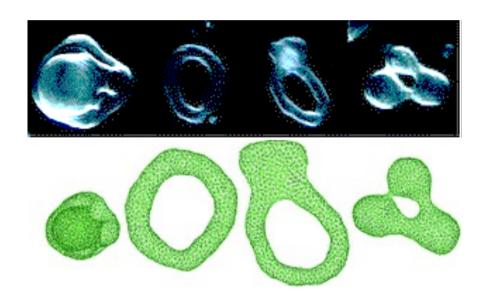
$$K_G = 1/(R_1 R_2) : \text{Gaussian curvature}$$

- \triangleright Elastic parameters κ, κ_G, c_0 depend on membrane
- ➤ **Simulation**: Triangulated membrane model (Noguchi, Gompper, Phys. Rev. E 2005)



Variety of membrane shapes ...

... that are reproduced by generic continuum models

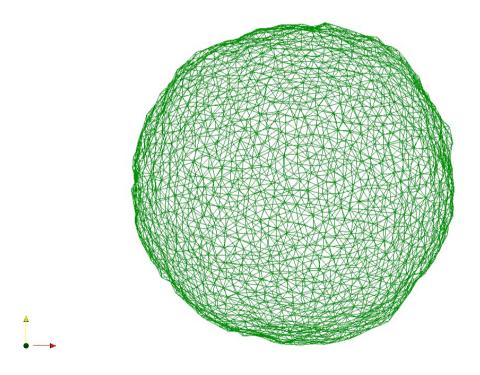


Hiroshi Noguchi et al (2015)

⇒ Goal: See how much such models can tell us about tubular membrane structures

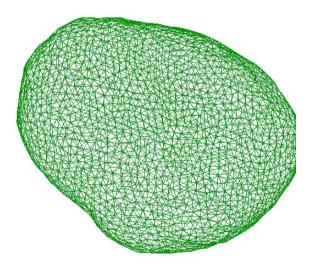
Example 1: Force free vesicle

Fixed enclosed volume



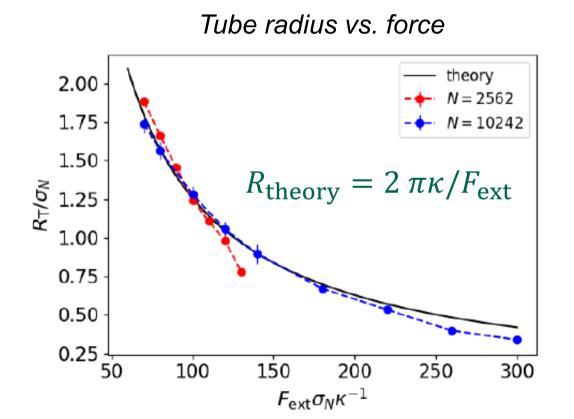
Example 2: Force applied at one end

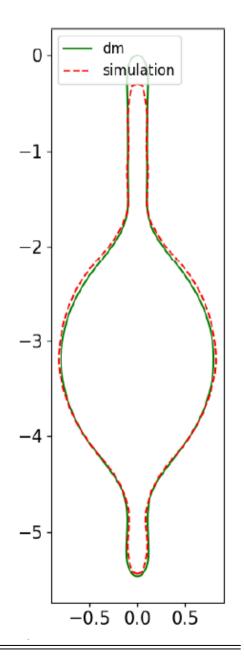
Fixed enclosed volume



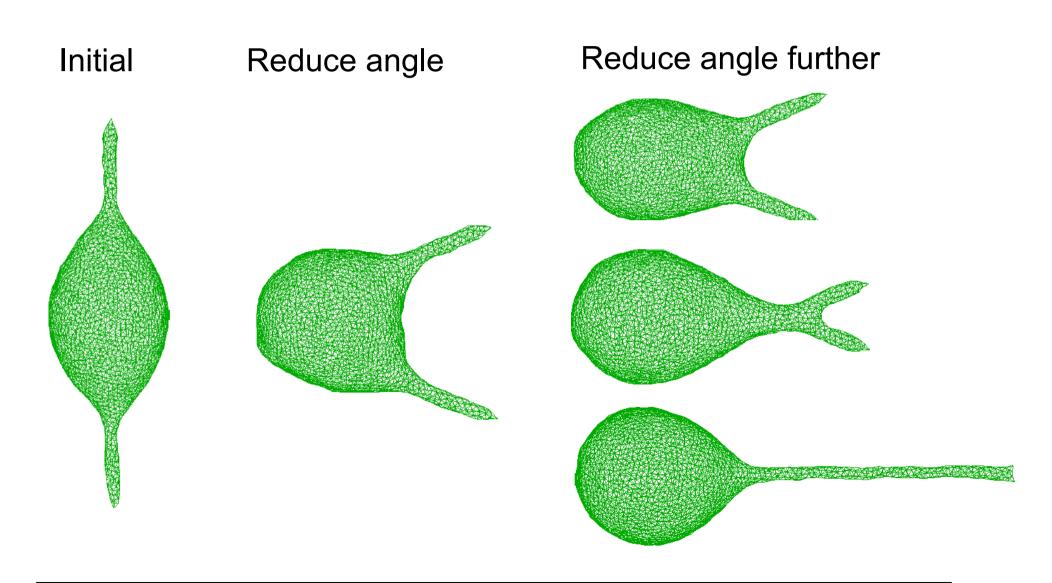
Numerical validation

For special symmetries, the Helfrich energy can be minimized semi-analytically

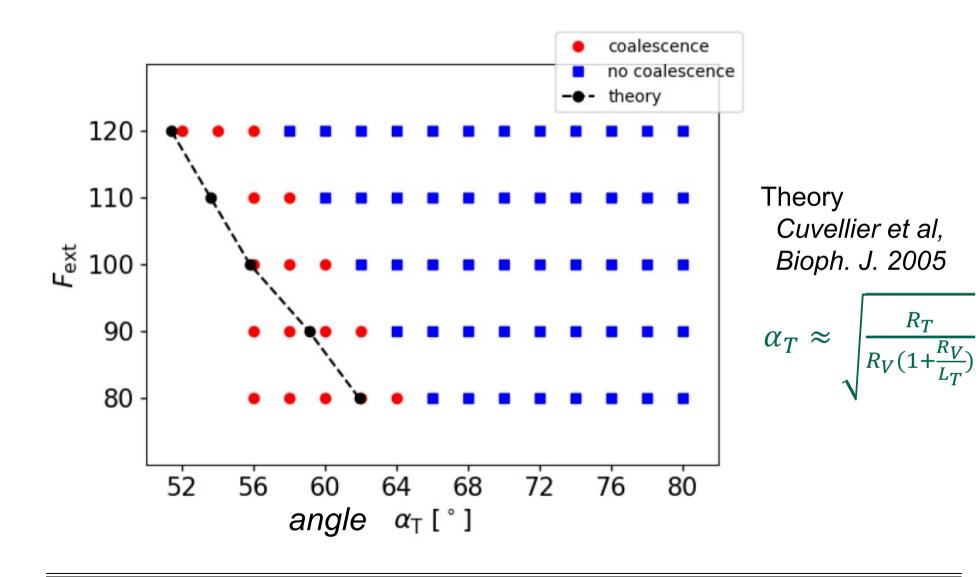




Interaction between tubes

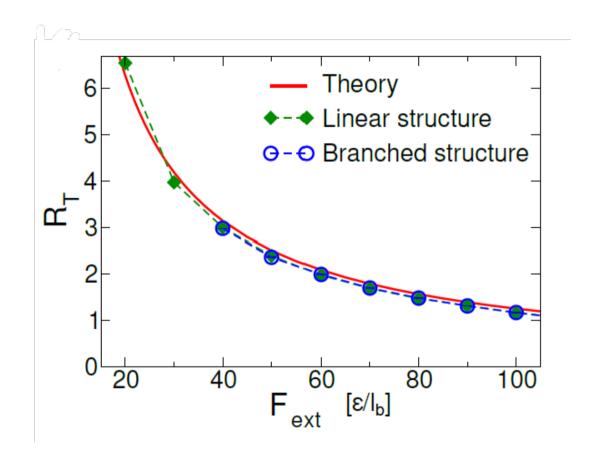


Tube interactions: Onset of coalescence



Tubes and Branches Simplification: No attached vesicle Enclosed volume not fixed → Focus on tubes → and, possibly, junctions

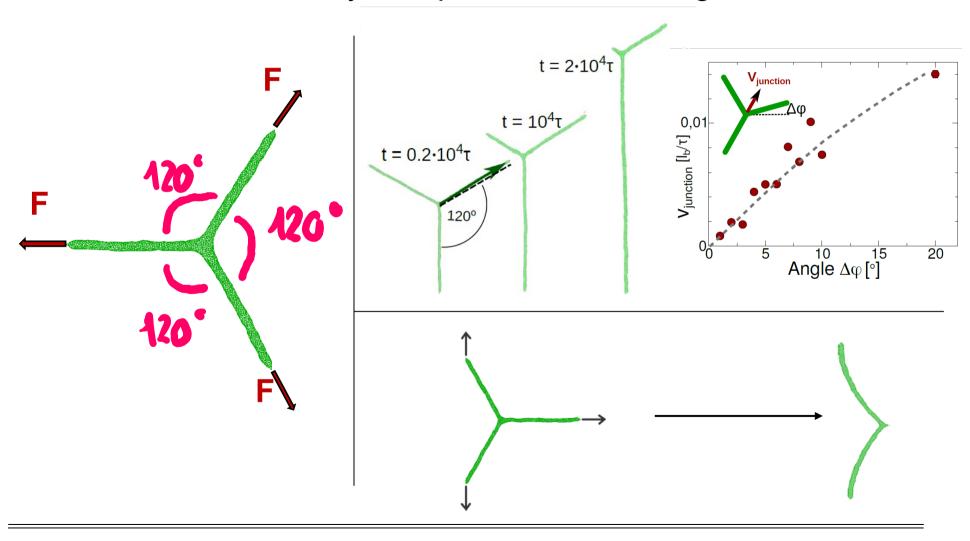
Tube radius



→ Comparable for linear and branched structures

Question 1: Angles at branch points?

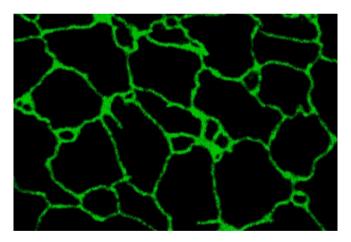
Observation: Only one possible stable angle: 120°



Comparison with experimental networks

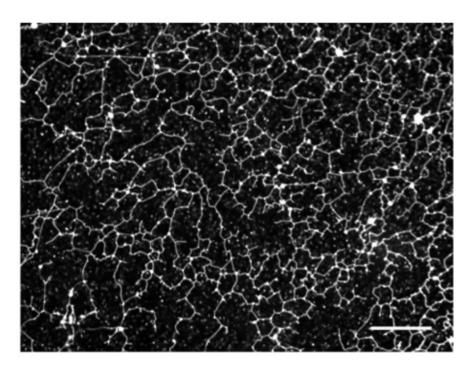
Experiments: All angles close to 120° √

Endoplasmatic reticulum



Dr. John Runions/ Science Photo Library

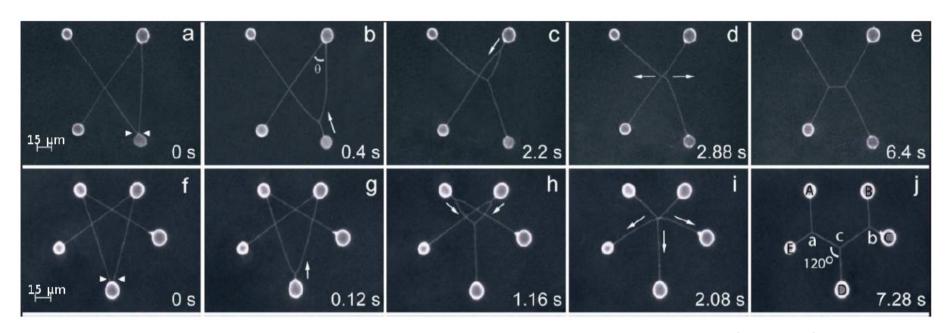
Reconstituted network



Powers, Wang, Liu, Rapoport Nature 543, 257 (2017)

Comparison with experimental networks

Time evolution of a liposome network

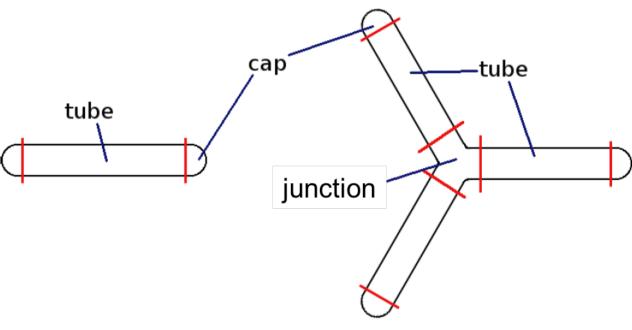


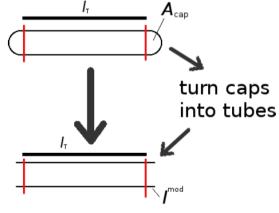
Lobovkina et al, Eur. Phys. J. E 254, 74 (2008).

Junctions move around, until all branch points reach 120°

2) Energy penalty for creating a branch

Analysis

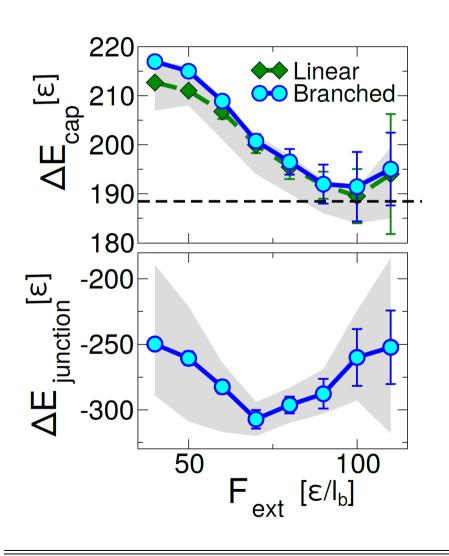




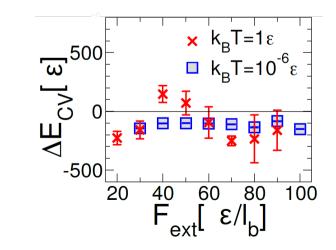
Cap/branch energy:

Energy difference between caps / branches and straight tubes with same membrane area

2) Energy penalty for creating a branch



- ⇒ Caps cost energy But: Junctions are favorable!
- ⇒ Net effect: No penalty!
 Even the energy of
 Junction + cap is negative!

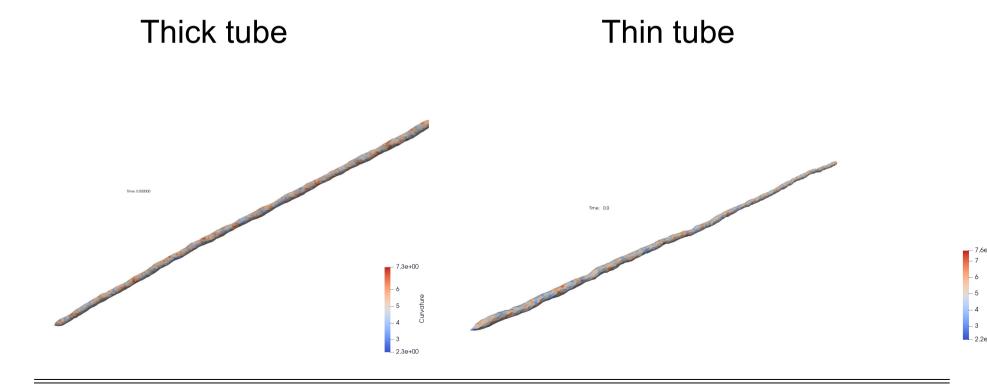


Bahrami et al: Tubes can be stabilized without applying a force by fixing enclosed volume (Bahrami, Hummer, ACS Nano 11, 9558, 2017)

Our results:

Bahrami et al: Tubes can be stabilized without applying a force by fixing enclosed volume (Bahrami, Hummer, ACS Nano 11, 9558, 2017)

Our results:

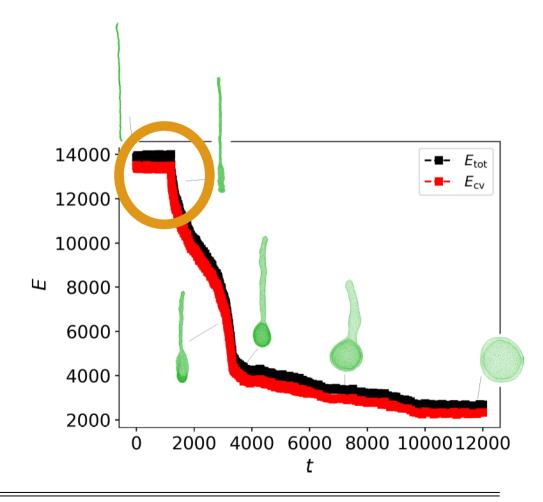


Bahrami et al: Tubes can be stabilized without applying force by fixing enclosed volume (Bahrami, Hummer, ACS Nano 11, 9558, 2017)

Our results:

Thin tubes turn into double-wall vesicles after a long time (activated process)

Thicker tubes remain metastable

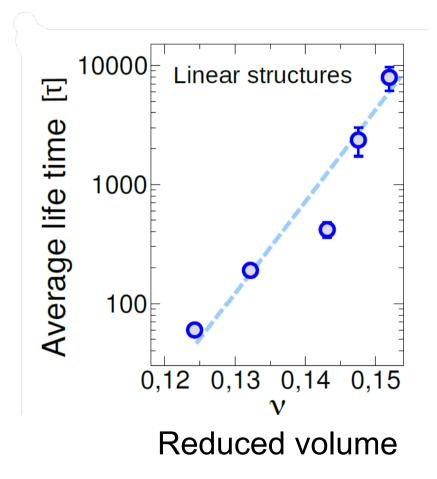


Bahrami et al: Tubes can be stabilized without applying force by fixing enclosed volume (Bahrami, Hummer, ACS Nano 11, 9558, 2017)

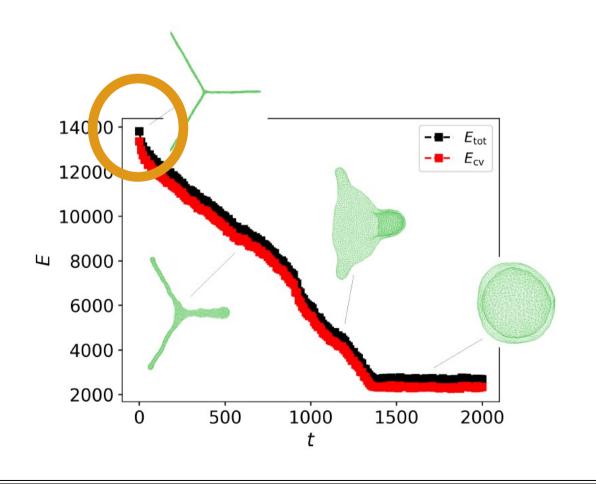
Our results:

Thin tubes turn into double-wall vesicles after a long time (activated process)

Thicker tubes remain metastable



All branched structures transform **immediately** into double-walled vesicles



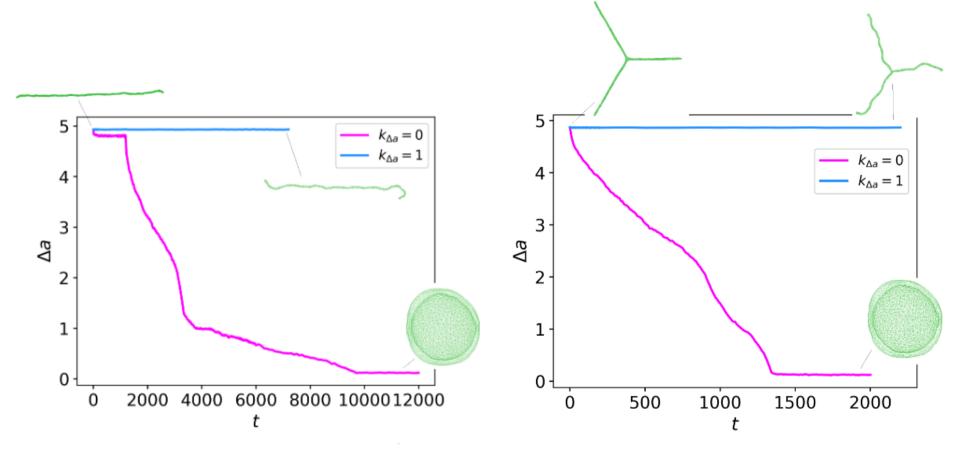
Spontaneous transition, no activation barrier

Thick tubes

Thin tubes

3b) Can tubular structures be stabilized?

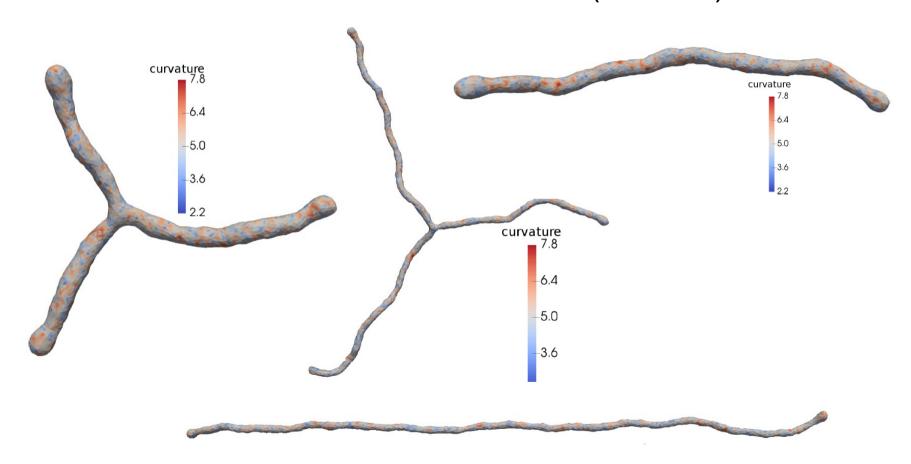
Next attempt: Additionally fix mean curvature ("area difference" Δa between inner and outer leaflet)



⇒ Both tubes and branches can be stabilized

3) Can tubular structures be stabilized?

Stable structures at fixed mean curvature (fixed ∆a)

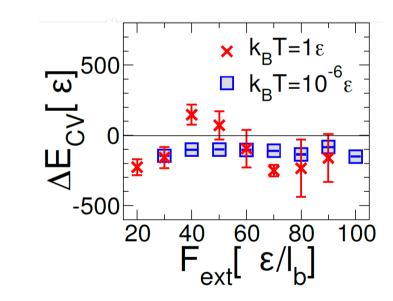


⇒ Both tubes and branches, thick and thin, are stabilized!

4) How about energy costs of branches?

Recall force-driven structure:

⇒ Energy for creating a branch was negative!



Force free structure at fixed mean curvature ∆a

⇒ Adding a junction has to be compensated by tube thinning

⇒ Net energy cost is positive!

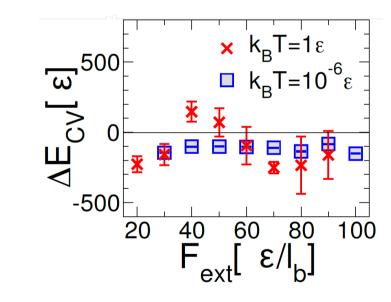
$$\Delta E_{\rm CV} \approx \pi \kappa + |\alpha \, \Delta E_{\rm junction}| > 0$$

Fixed	Structure	E_{CV}/ϵ		ν		Δa	
_	Linear	9333 ± 26		0.186 ± 0.001		3.90 ± 0.01	
	Branched	9082 ± 34		0.193 ± 0.001		3.81 ± 0.01	
		C1 (Linear) C2 (B:		ranched)	
		E_{CV}	ν	Δa	E_{CV}	ν	Δa
Δa	Linear	9333 ± 3	0.186	3.90	8975 ± 3	0.191	3.81
	Branched	9470 ± 3	0.187	3.90	9117 ± 3	0.192	3.81
ν	Linear	9355 ± 3	0.186	3.91	8882 ± 3	0.192	3.79
	Branch	9538 ± 4	0.186	3.92	9079 ± 4	0.193	3.80
$\nu, \Delta a$	Linear	9342 ± 3	0.186	3.90	8951 ± 3	0.192	3.81
	Branch	9480 ± 3	0.186	3.90	9126 ± 3	0.193	3.81

4) How about energy costs of branches?

Recall force-driven structure:

⇒ Energy for creating a branch was negative!



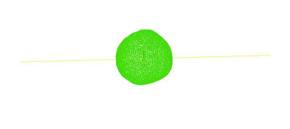
Force free structure at fixed mean curvature ∆a

- ⇒ Adding a junction has to be compensated by tube thinning
- ⇒ Net energy cost is positive!

$$\Delta E_{\rm CV} \approx \pi \kappa + \left| \alpha \, \Delta E_{\rm junction} \right| > 0$$

⇒ Global effect! Core energy of junction defect is negative!

5) Do stable four-fold junctions exist?

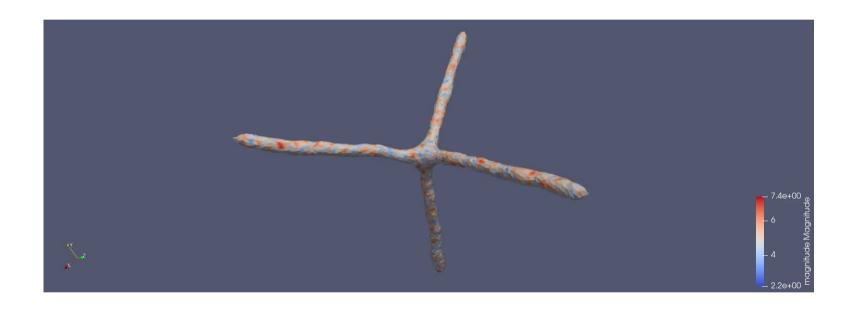


Force-driven structures:

- ⇒ Only tetrahedral junctions are stable.
- ⇒ All others break up into two threefold junctions

5) Do stable four-fold junctions exist?

Force-free structure with fixed ∆a



⇒ In the absence of force, four-fold junctions break up into two three-fold junctions

Summary

Linear and branched structures can be stabilized in generic membrane models by imposing a few very simple constraints.

Simulations of generic models can give insights

- ... why three-fold junctions with angle 180 degrees dominate.
- ... why branched structures are abundant in nature: Junctions are locally stable. Eliminating them is only favorable if the entire tube network rearranges

(M. Jung, G. Jung, FS, Phys. Rev. Lett. 130, 148401, 2023)

Acknowledgments

Maike Jung

Gerhard Jung

Hiroshi Noguchi (Tokyo) Enrico Schleiff (Frankfurt)

Simulation of elastic membranes I

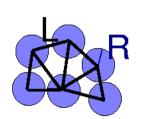
Goal: Simulation of "self-avoiding" membrane models that are directly based on an elastic model for membranes

Example: Helfrich model (total curvature term only)

$$F = \int d\mathbf{A} \left\{ \frac{\kappa}{2} K^2 \right\}$$

Realization: Triangulated membrane

Bond length $R < L < 2\sqrt{3}R$



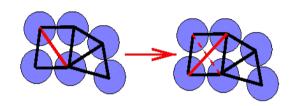
⇒ "Self-avoiding" sheets
Membranes cannot cross

(Kantor et al, 1986, Ho, Baumgärtner, 1990, Kroll, Gompper, 1992)

Simulation of elastic membranes II

Membrane Fluidity: Dynamic triangulation

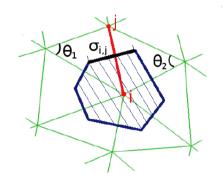
bond flip moves



Membrane elasticity: Discretization of elastic free energy for the spontaneous curvature model:

$$F = \frac{\kappa}{2} \sum_{\text{triangles}} \frac{1}{\sigma_i} \left(\sum_{j(i)} \frac{\sigma_{ij} \, r_{ij}}{r_{ij}} \right)^2$$

(Noguchi, Gompper, Phys. Rev. E 2005)



with

 σ_{ij} : bond length in dual lattice $\sigma_{ij} = r_{ij}(\cot(\theta_1) + \cot(\theta_2))/2$

 σ_i : cell area in dual lattice

$$\sigma_i = \frac{1}{4} \sum_{j(i)} \sigma_{ij} \ r_{ij}$$