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Tubular membrane structures In cells

Endoplasmatic reticulum Plastides and stromulae

Dr. John Runions/Science Photo Library

Hanson, Sattarzadeh
Plant Physiol. 2011;155:1486-1492




Tubular structures — Stabilization?

Curvature active membrane proteins

(z.B. Machettira ... Schleiff
Frontiers Plant Science 2012)

. "Protein crowding”
(Stachowiak et al, Nature Cell Biol. 2012)

. Interactions with membranes

of other organelles
(Schattat et al, Plant Physiology 2011)

. Active mechanism,

mechanic force due to cytoplasm
(Kwok, Hanson, Plant Journal 2003)




Question:

Is there anything we can learn
from simple models?




Characteristic length scales in membranes

Example: Membrane tubulation due to BAR-proteins

A continuum
Time “Coarse-grain”
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Minimal model of membrane shapes

» Elastic “Helfrich” Energy (simplest variant)

F:jdA{g(K—KO)2+KGKG}

K =1/R;+1/R,: Total curvature
Ks =1/(R;R,) : Gaussian curvature

» Elastic parameters «k, k¢, c, depend on membrane

» Simulation: Triangulated membrane model
(Noguchi, Gompper, Phys. Rev. E 2005)




Variety of membrane shapes ...

... that are reproduced by generic continuum models

Hiroshi Noguchi et al
(2015)

= Goal: See how much such models can tell us
about tubular membrane structures




Example 1: Force free vesicle

&

nﬂlh@

=)

X

75

7

o
[£

T~

f ‘%@w i

K<t
i

L &“‘1

Fixed enclosed volume




Example 2: Force applied at one end

Fixed enclosed volume




Numerical validation

For special symmetries, the Helfrich energy

can be minimized semi-analytically

Tube radius vs. force
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nteraction between tubes

Reduce angle further
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Tube interactions: Onset of coalescence
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Tubes and Branches

R T T

.....

Simplification: No attached vesicle
Enclosed volume not fixed

— Focus on tubes
— and, possibly, junctions
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— Comparable for linear and branched structures




Question 1: Angles at branch points ?

Observation: Only one possible stable angle: 120°
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Comparison with experimental networks

Experiments: All angles Reconstituted network

close to 120° +

Endoplasmatic reticulum

Powers, Wang, Liu, Rapoport
Nature 543, 257 (2017)
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Comparison with experimental networks

Time evolution of a liposome network

Lobovkina et al, Eur. Phys. J. E 254, 74 (2008).

Junctions move around, until all branch points reach 120°




2) Energy penalty for creating a branch

Analysis
cap tube
tube \\
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junction
h A
( 5 |
N Cap/branch energy:
l el Energy difference between
/ Vd caps / branches and straight tubes

with same membrane area
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2) Energy penalty for creating a branch

AE

[€]

junction

AE

' |
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VTR, OO Branched-

— Caps cost energy
But: Junctions are favorable!

= Net effect: No penalty!
Even the energy of
Junction + cap is negative!
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3) Are tubular structures stable?

Bahrami et al: Tubes can be stabilized without applying a force
by fixing enclosed volume (Bahrami, Hummer, ACS Nano 11, 9558, 2017)

Our results:
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Our results:

Thick tube Thin tube




3) Are tubular structures stable?

Bahrami et al: Tubes can be stabilized without applying force
by fixing enclosed volume (Bahrami, Hummer, ACS Nano 11, 9558, 2017)

Our results:
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3) Are tubular structures stable?

Bahrami et al: Tubes can be stabilized without applying force
by fixing enclosed volume (Bahrami, Hummer, ACS Nano 11, 9558, 2017)
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3) Are tubular structures stable?

All branched structures transform immediately
iInto double-walled vesicles
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3) Are tubular structures stable?

Thick tubes Thin tubes




3b) Can tubular structures be stabilized?

Next attempt: Additionally fix mean curvature
("area difference” Aa between inner and outer leaflet)
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= Both tubes and branches can be stabilized




3) Can tubular structures be stabilized?

Stable structures at fixed mean curvature (fixed Aa)

curvature

I 7.8

-64

-5.0

— Both tubes and branches, thick and thin, are stabilized !




4) How about energy costs of branches

Recall force-driven structure:

= Energy for creating

a branch was negative!
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Force free structure at

fixed mean curvature Aa

= Adding a junction has
to be compensated
by tube thinning

= Net energy cost is positive!

AECV ~ TTK + |C¥ AEjunction| >0

Fixed | Structure Ecv /e v Aa
— Linear 9333 £+ 26 0.186 4+ 0.001 3.90 +£0.01
Branched 9082 £ 34 0.193 £0.001 3.81 £0.01

C1 (Linear) C2 (Branched)
Eov v Aa| FEcv v Aa
Aa Linear 0333 £310.186(3.90|8975 £+ 3(0.191| 3.81
Branched |9470 & 3(0.187(3.90(9117 4 3]0.192] 3.81
v Linear 9355 £ 3]0.186(3.91|8882 4+ 3{0.192| 3.79
Branch 0538 +£4(0.186(3.92(9079 £4(0.193] 3.80
v, Aa |Linear 9342 + 310.186(3.90|8951 £ 3(0.192] 3.81
Branch 9480 + 3(0.186(3.90(9126 & 3(0.193| 3.81




4) How about energy costs of branches

Recall force-driven structure:

= Energy for creating

a branch was negative!
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Force free structure at

fixed mean curvature Aa

= Adding a junction has
to be compensated
by tube thinning

= Net energy cost is positive!

AECV ~ TTK + |C¥ AEjunction| >0

= Global effect!
Core energy of junction
defect is negative!




5) Do stable four-fold junctions exist??

Force-driven structures:

= Only tetrahedral junctions
are stable.

= All others break up
into two threefold junctions




5) Do stable four-fold junctions exist?

Force-free structure with fixed Aa

= In the absence of force, four-fold junctions
break up into two three-fold junctions




Linear and branched structures can be stabilized in generic
membrane models by imposing a few very simple
constraints.

Simulations of generic models can give insights

> ... why three-fold junctions with angle 180 degrees
dominate.

> ... why branched structures are abundant in nature:
Junctions are locally stable. Eliminating them is only
favorable if the entire tube network rearranges

(M. Jung, G. Jung, FS, Phys. Rev. Lett. 130, 148401, 2023)
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Simulation of elastic membranes |

Goal: Simulation of “self-avoiding” membrane models that are
directly based on an elastic model for membranes

Example: Helfrich model (total curvature term only)

K
F=[dA{=K"
2
Realization: Triangulated membrane
Bond length R < L < 2v3R

m = ,Self-avoiding” sheets
Membranes cannot cross

(Kanftor et al, 1986, Ho, Baumgartner, 1990, Kroll, Gompper, 1992)




Simulation of elastic membranes ||

Membrane Fluidity: Dynamic triangulation

bond flip
&3 -8

moves
Membrane elasticity: Discretization of elastic free energy
for the spontaneous curvature model:

K 1 01 Tij\° (Noguchi, Gompper,
F=5 z ;(Z - > Phys. Rev. E 2005)
i ij

triangles j(@)

with  g;; : bond length in dual lattice
o;j = 1;;(cot(8;) + cot(6;))/2

o; . cell area in dual lattice
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